import time from threading import Thread import gradio as gr import torch from PIL import Image from transformers import AutoProcessor, LlavaForConditionalGeneration from transformers import TextIteratorStreamer import spaces PLACEHOLDER = """

LLaVA-Llama-3-8B

Llava-Llama-3-8b is a LLaVA model fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with ShareGPT4V-PT and InternVL-SFT by XTuner

""" model_id_llama3 = "xtuner/llava-llama-3-8b-v1_1-transformers" model_id_phi3 = "xtuner/llava-llama-3-8b-v1_1-transformers" processor = AutoProcessor.from_pretrained(model_id_llama3) processor = AutoProcessor.from_pretrained(model_id_phi3) model_llama3 = LlavaForConditionalGeneration.from_pretrained( model_id_llama3, torch_dtype=torch.float16, low_cpu_mem_usage=True, ) model_llama3.to("cuda:0") model_llama3.generation_config.eos_token_id = 128009 model_phi3 = LlavaForConditionalGeneration.from_pretrained( model_id_phi3, torch_dtype=torch.float16, low_cpu_mem_usage=True, ) model_phi3.to("cuda:0") model_phi3.generation_config.eos_token_id = 128009 @spaces.GPU def bot_streaming_llama3(message, history): print(message) if message["files"]: # message["files"][-1] is a Dict or just a string if type(message["files"][-1]) == dict: image = message["files"][-1]["path"] else: image = message["files"][-1] else: # if there's no image uploaded for this turn, look for images in the past turns # kept inside tuples, take the last one for hist in history: if type(hist[0]) == tuple: image = hist[0][0] try: if image is None: # Handle the case where image is None gr.Error("You need to upload an image for LLaVA to work.") except NameError: # Handle the case where 'image' is not defined at all gr.Error("You need to upload an image for LLaVA to work.") prompt = f"<|start_header_id|>user<|end_header_id|>\n\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" # print(f"prompt: {prompt}") image = Image.open(image) inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) thread = Thread(target=model_llama3.generate, kwargs=generation_kwargs) thread.start() text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" # print(f"text_prompt: {text_prompt}") buffer = "" time.sleep(0.5) for new_text in streamer: # find <|eot_id|> and remove it from the new_text if "<|eot_id|>" in new_text: new_text = new_text.split("<|eot_id|>")[0] buffer += new_text # generated_text_without_prompt = buffer[len(text_prompt):] generated_text_without_prompt = buffer # print(generated_text_without_prompt) time.sleep(0.06) # print(f"new_text: {generated_text_without_prompt}") yield generated_text_without_prompt @spaces.GPU def bot_streaming_phi3(message, history): print(message) if message["files"]: # message["files"][-1] is a Dict or just a string if type(message["files"][-1]) == dict: image = message["files"][-1]["path"] else: image = message["files"][-1] else: # if there's no image uploaded for this turn, look for images in the past turns # kept inside tuples, take the last one for hist in history: if type(hist[0]) == tuple: image = hist[0][0] try: if image is None: # Handle the case where image is None gr.Error("You need to upload an image for LLaVA to work.") except NameError: # Handle the case where 'image' is not defined at all gr.Error("You need to upload an image for LLaVA to work.") prompt = f"<|start_header_id|>user<|end_header_id|>\n\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" # print(f"prompt: {prompt}") image = Image.open(image) inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) thread = Thread(target=model_phi3.generate, kwargs=generation_kwargs) thread.start() text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" # print(f"text_prompt: {text_prompt}") buffer = "" time.sleep(0.5) for new_text in streamer: # find <|eot_id|> and remove it from the new_text if "<|eot_id|>" in new_text: new_text = new_text.split("<|eot_id|>")[0] buffer += new_text # generated_text_without_prompt = buffer[len(text_prompt):] generated_text_without_prompt = buffer # print(generated_text_without_prompt) time.sleep(0.06) # print(f"new_text: {generated_text_without_prompt}") yield generated_text_without_prompt #chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1) #chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) with gr.Blocks(fill_height=True, ) as demo: with gr.Row(): chatbot1 = gr.Chatbot( [], elem_id="llama3", bubble_full_width=False, label='LLaVa-Llama3' ) chatbot2 = gr.Chatbot( [], elem_id="phi3", bubble_full_width=False, label='LLaVa-Phi3' ) chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) gr.Examples(examples=[[{"text": "What is on the flower?", "files": ["./bee.png"]}], [{"text": "How to make this pastry?", "files": ["./baklava.png"]},],] inputs=chat_input) #chat_input.submit(lambda: gr.MultimodalTextbox(interactive=False), None, [chat_input]).then(bot_streaming_llama3, [chat_input, chatbot1,], [chatbot1,]) chat_msg1 = chat_input.submit(bot_streaming_llama3, [chat_input, chatbot1,], [chatbot1,]) chat_msg2 = chat_input.submit(bot_streaming_phi3, [chat_input, chatbot2,], [chatbot2,]) #bot_msg1 = chat_msg1.then(bot, chatbot1, chatbot1, api_name="bot_response1") #chat_msg1.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) #bot_msg2 = chat_msg2.then(bot, chatbot2, chatbot2, api_name="bot_response2") #bot_msg2.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) chatbot1.like(print_like_dislike, None, None) chatbot2.like(print_like_dislike, None, None) #gr.ChatInterface( #fn=bot_streaming_llama3, #title="LLaVA Llama-3-8B", #examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]}, # {"text": "How to make this pastry?", "files": ["./baklava.png"]}], #description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", #stop_btn="Stop Generation", #multimodal=True, #textbox=chat_input, #chatbot=chatbot, #) demo.queue(api_open=False) demo.launch(show_api=False, share=False)