import time
from threading import Thread
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import TextIteratorStreamer
import spaces
PLACEHOLDER = """
LLaVA-Llama-3-8B
Llava-Llama-3-8b is a LLaVA model fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with ShareGPT4V-PT and InternVL-SFT by XTuner
"""
model_id_llama3 = "xtuner/llava-llama-3-8b-v1_1-transformers"
model_id_phi3 = "xtuner/llava-llama-3-8b-v1_1-transformers"
processor = AutoProcessor.from_pretrained(model_id_llama3)
processor = AutoProcessor.from_pretrained(model_id_phi3)
model_llama3 = LlavaForConditionalGeneration.from_pretrained(
model_id_llama3,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model_llama3.to("cuda:0")
model_llama3.generation_config.eos_token_id = 128009
model_phi3 = LlavaForConditionalGeneration.from_pretrained(
model_id_phi3,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model_phi3.to("cuda:0")
model_phi3.generation_config.eos_token_id = 128009
@spaces.GPU
def bot_streaming_llama3(message, history):
print(message)
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"prompt: {prompt}")
image = Image.open(image)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = Thread(target=model_llama3.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"text_prompt: {text_prompt}")
buffer = ""
time.sleep(0.5)
for new_text in streamer:
# find <|eot_id|> and remove it from the new_text
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
# generated_text_without_prompt = buffer[len(text_prompt):]
generated_text_without_prompt = buffer
# print(generated_text_without_prompt)
time.sleep(0.06)
# print(f"new_text: {generated_text_without_prompt}")
yield generated_text_without_prompt
@spaces.GPU
def bot_streaming_phi3(message, history):
print(message)
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"prompt: {prompt}")
image = Image.open(image)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = Thread(target=model_phi3.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"text_prompt: {text_prompt}")
buffer = ""
time.sleep(0.5)
for new_text in streamer:
# find <|eot_id|> and remove it from the new_text
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
# generated_text_without_prompt = buffer[len(text_prompt):]
generated_text_without_prompt = buffer
# print(generated_text_without_prompt)
time.sleep(0.06)
# print(f"new_text: {generated_text_without_prompt}")
yield generated_text_without_prompt
#chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
#chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
with gr.Row():
chatbot1 = gr.Chatbot(
[],
elem_id="llama3",
bubble_full_width=False,
label='LLaVa-Llama3'
)
chatbot2 = gr.Chatbot(
[],
elem_id="phi3",
bubble_full_width=False,
label='LLaVa-Phi3'
)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
gr.Examples(examples=[[{"text": "What is on the flower?", "files": ["./bee.png"]}],
[{"text": "How to make this pastry?", "files": ["./baklava.png"]},],]
inputs=chat_input)
#chat_input.submit(lambda: gr.MultimodalTextbox(interactive=False), None, [chat_input]).then(bot_streaming_llama3, [chat_input, chatbot1,], [chatbot1,])
chat_msg1 = chat_input.submit(bot_streaming_llama3, [chat_input, chatbot1,], [chatbot1,])
chat_msg2 = chat_input.submit(bot_streaming_phi3, [chat_input, chatbot2,], [chatbot2,])
#bot_msg1 = chat_msg1.then(bot, chatbot1, chatbot1, api_name="bot_response1")
#chat_msg1.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
#bot_msg2 = chat_msg2.then(bot, chatbot2, chatbot2, api_name="bot_response2")
#bot_msg2.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
chatbot1.like(print_like_dislike, None, None)
chatbot2.like(print_like_dislike, None, None)
#gr.ChatInterface(
#fn=bot_streaming_llama3,
#title="LLaVA Llama-3-8B",
#examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
# {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
#description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
#stop_btn="Stop Generation",
#multimodal=True,
#textbox=chat_input,
#chatbot=chatbot,
#)
demo.queue(api_open=False)
demo.launch(show_api=False, share=False)