Spaces:
Build error
Build error
File size: 11,038 Bytes
210b510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import xavier_init
from mmcv.runner import force_fp32
from mmdet.core import (build_anchor_generator, build_assigner,
build_bbox_coder, build_sampler, multi_apply)
from ..builder import HEADS
from ..losses import smooth_l1_loss
from .anchor_head import AnchorHead
# TODO: add loss evaluator for SSD
@HEADS.register_module()
class SSDHead(AnchorHead):
"""SSD head used in https://arxiv.org/abs/1512.02325.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
anchor_generator (dict): Config dict for anchor generator
bbox_coder (dict): Config of bounding box coder.
reg_decoded_bbox (bool): If true, the regression loss would be
applied directly on decoded bounding boxes, converting both
the predicted boxes and regression targets to absolute
coordinates format. Default False. It should be `True` when
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
train_cfg (dict): Training config of anchor head.
test_cfg (dict): Testing config of anchor head.
""" # noqa: W605
def __init__(self,
num_classes=80,
in_channels=(512, 1024, 512, 256, 256, 256),
anchor_generator=dict(
type='SSDAnchorGenerator',
scale_major=False,
input_size=300,
strides=[8, 16, 32, 64, 100, 300],
ratios=([2], [2, 3], [2, 3], [2, 3], [2], [2]),
basesize_ratio_range=(0.1, 0.9)),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
clip_border=True,
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
),
reg_decoded_bbox=False,
train_cfg=None,
test_cfg=None):
super(AnchorHead, self).__init__()
self.num_classes = num_classes
self.in_channels = in_channels
self.cls_out_channels = num_classes + 1 # add background class
self.anchor_generator = build_anchor_generator(anchor_generator)
num_anchors = self.anchor_generator.num_base_anchors
reg_convs = []
cls_convs = []
for i in range(len(in_channels)):
reg_convs.append(
nn.Conv2d(
in_channels[i],
num_anchors[i] * 4,
kernel_size=3,
padding=1))
cls_convs.append(
nn.Conv2d(
in_channels[i],
num_anchors[i] * (num_classes + 1),
kernel_size=3,
padding=1))
self.reg_convs = nn.ModuleList(reg_convs)
self.cls_convs = nn.ModuleList(cls_convs)
self.bbox_coder = build_bbox_coder(bbox_coder)
self.reg_decoded_bbox = reg_decoded_bbox
self.use_sigmoid_cls = False
self.cls_focal_loss = False
self.train_cfg = train_cfg
self.test_cfg = test_cfg
# set sampling=False for archor_target
self.sampling = False
if self.train_cfg:
self.assigner = build_assigner(self.train_cfg.assigner)
# SSD sampling=False so use PseudoSampler
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
self.fp16_enabled = False
def init_weights(self):
"""Initialize weights of the head."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
xavier_init(m, distribution='uniform', bias=0)
def forward(self, feats):
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple:
cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_anchors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_anchors * 4.
"""
cls_scores = []
bbox_preds = []
for feat, reg_conv, cls_conv in zip(feats, self.reg_convs,
self.cls_convs):
cls_scores.append(cls_conv(feat))
bbox_preds.append(reg_conv(feat))
return cls_scores, bbox_preds
def loss_single(self, cls_score, bbox_pred, anchor, labels, label_weights,
bbox_targets, bbox_weights, num_total_samples):
"""Compute loss of a single image.
Args:
cls_score (Tensor): Box scores for eachimage
Has shape (num_total_anchors, num_classes).
bbox_pred (Tensor): Box energies / deltas for each image
level with shape (num_total_anchors, 4).
anchors (Tensor): Box reference for each scale level with shape
(num_total_anchors, 4).
labels (Tensor): Labels of each anchors with shape
(num_total_anchors,).
label_weights (Tensor): Label weights of each anchor with shape
(num_total_anchors,)
bbox_targets (Tensor): BBox regression targets of each anchor wight
shape (num_total_anchors, 4).
bbox_weights (Tensor): BBox regression loss weights of each anchor
with shape (num_total_anchors, 4).
num_total_samples (int): If sampling, num total samples equal to
the number of total anchors; Otherwise, it is the number of
positive anchors.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
loss_cls_all = F.cross_entropy(
cls_score, labels, reduction='none') * label_weights
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
pos_inds = ((labels >= 0) &
(labels < self.num_classes)).nonzero().reshape(-1)
neg_inds = (labels == self.num_classes).nonzero().view(-1)
num_pos_samples = pos_inds.size(0)
num_neg_samples = self.train_cfg.neg_pos_ratio * num_pos_samples
if num_neg_samples > neg_inds.size(0):
num_neg_samples = neg_inds.size(0)
topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples)
loss_cls_pos = loss_cls_all[pos_inds].sum()
loss_cls_neg = topk_loss_cls_neg.sum()
loss_cls = (loss_cls_pos + loss_cls_neg) / num_total_samples
if self.reg_decoded_bbox:
# When the regression loss (e.g. `IouLoss`, `GIouLoss`)
# is applied directly on the decoded bounding boxes, it
# decodes the already encoded coordinates to absolute format.
bbox_pred = self.bbox_coder.decode(anchor, bbox_pred)
loss_bbox = smooth_l1_loss(
bbox_pred,
bbox_targets,
bbox_weights,
beta=self.train_cfg.smoothl1_beta,
avg_factor=num_total_samples)
return loss_cls[None], loss_bbox
@force_fp32(apply_to=('cls_scores', 'bbox_preds'))
def loss(self,
cls_scores,
bbox_preds,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
gt_bboxes (list[Tensor]): each item are the truth boxes for each
image in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.anchor_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, img_metas, device=device)
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
label_channels=1,
unmap_outputs=False)
if cls_reg_targets is None:
return None
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
num_images = len(img_metas)
all_cls_scores = torch.cat([
s.permute(0, 2, 3, 1).reshape(
num_images, -1, self.cls_out_channels) for s in cls_scores
], 1)
all_labels = torch.cat(labels_list, -1).view(num_images, -1)
all_label_weights = torch.cat(label_weights_list,
-1).view(num_images, -1)
all_bbox_preds = torch.cat([
b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
for b in bbox_preds
], -2)
all_bbox_targets = torch.cat(bbox_targets_list,
-2).view(num_images, -1, 4)
all_bbox_weights = torch.cat(bbox_weights_list,
-2).view(num_images, -1, 4)
# concat all level anchors to a single tensor
all_anchors = []
for i in range(num_images):
all_anchors.append(torch.cat(anchor_list[i]))
# check NaN and Inf
assert torch.isfinite(all_cls_scores).all().item(), \
'classification scores become infinite or NaN!'
assert torch.isfinite(all_bbox_preds).all().item(), \
'bbox predications become infinite or NaN!'
losses_cls, losses_bbox = multi_apply(
self.loss_single,
all_cls_scores,
all_bbox_preds,
all_anchors,
all_labels,
all_label_weights,
all_bbox_targets,
all_bbox_weights,
num_total_samples=num_total_pos)
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
|