import os import torch import torch.nn.functional as F import torchvision.transforms as T from uniformer import uniformer_small from imagenet_class_index import imagenet_classnames import gradio as gr from huggingface_hub import hf_hub_download # Device on which to run the model # Set to cuda to load on GPU device = "cpu" # os.system("wget https://cdn-lfs.huggingface.co/Andy1621/uniformer/fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775") model_path = hf_hub_download(repo_id="Andy1621/uniformer", filename="uniformer_small_in1k.pth") # Pick a pretrained model model = uniformer_small() # state_dict = torch.load('fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775', map_location='cpu') state_dict = torch.load(model_path, map_location='cpu') model.load_state_dict(state_dict['model']) # Set to eval mode and move to desired device model = model.to(device) model = model.eval() # Create an id to label name mapping imagenet_id_to_classname = {} for k, v in imagenet_classnames.items(): imagenet_id_to_classname[k] = v[1] def inference(img): image = img image_transform = T.Compose( [ T.Resize(224), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) image = image_transform(image) # The model expects inputs of shape: B x C x H x W image = image.unsqueeze(0) prediction = model(image) prediction = F.softmax(prediction, dim=1).flatten() # return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)} pred_classes = prediction.topk(k=5).indices pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]] pred_class_probs = [prediction[0][i.item()].item() * 100 for i in pred_classes[0]] res = "Top 5 predicted labels:\n" for name, prob in zip(pred_class_names, pred_class_probs): res += f"[{prob:2.2f}%]\t{name}\n" return res def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) demo = gr.Blocks() with demo: gr.Markdown( """ # UniFormer-S Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. """ ) with gr.Box(): with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label='Input Image', type='file') with gr.Row(): submit_button = gr.Button('Submit') with gr.Column(): label = gr.Label(num_top_classes=5) with gr.Row(): example_images = gr.Dataset(components=[input_image], samples=[['library.jpeg'], ['cat.png'], ['dog.png'], ['panda.png']]) gr.Markdown( """

UniFormer: Unifying Convolution and Self-attention for Visual Recognition | Github Repo

""" ) submit_button.click(fn=inference, inputs=input_image, outputs=label) example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components) demo.launch(enable_queue=True, cache_examples=True) # inputs = gr.inputs.Image(type='pil') # label = gr.outputs.Label(num_top_classes=5) # title = "UniFormer-S" # description = "Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." # article = "

UniFormer: Unifying Convolution and Self-attention for Visual Recognition | Github Repo

" # gr.Interface( # inference, inputs, outputs=label, # title=title, description=description, article=article, # examples=[['library.jpeg'], ['cat.png'], ['dog.png'], ['panda.png']] # ).launch(enable_queue=True, cache_examples=True)