Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| import torch.nn.functional as F | |
| import torchvision.transforms as T | |
| from uniformer import uniformer_small | |
| from imagenet_class_index import imagenet_classnames | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| # Device on which to run the model | |
| # Set to cuda to load on GPU | |
| device = "cpu" | |
| # os.system("wget https://cdn-lfs.huggingface.co/Andy1621/uniformer/fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775") | |
| model_path = hf_hub_download(repo_id="Andy1621/uniformer", filename="uniformer_small_in1k.pth") | |
| # Pick a pretrained model | |
| model = uniformer_small() | |
| # state_dict = torch.load('fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775', map_location='cpu') | |
| state_dict = torch.load(model_path, map_location='cpu') | |
| model.load_state_dict(state_dict['model']) | |
| # Set to eval mode and move to desired device | |
| model = model.to(device) | |
| model = model.eval() | |
| # Create an id to label name mapping | |
| imagenet_id_to_classname = {} | |
| for k, v in imagenet_classnames.items(): | |
| imagenet_id_to_classname[k] = v[1] | |
| def inference(img): | |
| image = img | |
| image_transform = T.Compose( | |
| [ | |
| T.Resize(224), | |
| T.CenterCrop(224), | |
| T.ToTensor(), | |
| T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| image = image_transform(image) | |
| # The model expects inputs of shape: B x C x H x W | |
| image = image.unsqueeze(0) | |
| prediction = model(image) | |
| prediction = F.softmax(prediction, dim=1).flatten() | |
| return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)} | |
| def set_example_image(example: list) -> dict: | |
| return gr.Image.update(value=example[0]) | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown( | |
| """ | |
| # UniFormer-S | |
| Gradio demo for <a href='https://github.com/Sense-X/UniFormer' target='_blank'>UniFormer</a>: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. | |
| """ | |
| ) | |
| with gr.Box(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_image = gr.Image(label='Input Image', type='pil') | |
| with gr.Row(): | |
| submit_button = gr.Button('Submit') | |
| with gr.Column(): | |
| label = gr.Label(num_top_classes=5) | |
| with gr.Row(): | |
| example_images = gr.Dataset(components=[input_image], samples=[['library.jpeg'], ['cat.png'], ['dog.png'], ['panda.png']]) | |
| gr.Markdown( | |
| """ | |
| <p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p> | |
| """ | |
| ) | |
| submit_button.click(fn=inference, inputs=input_image, outputs=label) | |
| example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components) | |
| demo.launch(enable_queue=True) |