Spaces:
Runtime error
Runtime error
File size: 4,197 Bytes
62e7390 e3e6c1e 62e7390 c477a26 e3e6c1e c477a26 e3e6c1e d44f456 c477a26 62e7390 c477a26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import os
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from uniformer import uniformer_small
from imagenet_class_index import imagenet_classnames
import gradio as gr
from huggingface_hub import hf_hub_download
# Device on which to run the model
# Set to cuda to load on GPU
device = "cpu"
# os.system("wget https://cdn-lfs.huggingface.co/Andy1621/uniformer/fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775")
model_path = hf_hub_download(repo_id="Andy1621/uniformer", filename="uniformer_small_in1k.pth")
# Pick a pretrained model
model = uniformer_small()
# state_dict = torch.load('fd192c31f8bd77670de8f171111bd51f56fd87e6aea45043ab2edc181e1fa775', map_location='cpu')
state_dict = torch.load(model_path, map_location='cpu')
model.load_state_dict(state_dict['model'])
# Set to eval mode and move to desired device
model = model.to(device)
model = model.eval()
# Create an id to label name mapping
imagenet_id_to_classname = {}
for k, v in imagenet_classnames.items():
imagenet_id_to_classname[k] = v[1]
def inference(img):
image = img
image_transform = T.Compose(
[
T.Resize(224),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
image = image_transform(image)
# The model expects inputs of shape: B x C x H x W
image = image.unsqueeze(0)
prediction = model(image)
prediction = F.softmax(prediction, dim=1).flatten()
# return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}
pred_classes = prediction.topk(k=5).indices
pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]]
pred_class_probs = [prediction[0][i.item()].item() * 100 for i in pred_classes[0]]
res = "Top 5 predicted labels:\n"
for name, prob in zip(pred_class_names, pred_class_probs):
res += f"[{prob:2.2f}%]\t{name}\n"
return res
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# UniFormer-S
Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.
"""
)
with gr.Box():
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image', type='file')
with gr.Row():
submit_button = gr.Button('Submit')
with gr.Column():
label = gr.Label(num_top_classes=5)
with gr.Row():
example_images = gr.Dataset(components=[input_image], samples=[['library.jpeg'], ['cat.png'], ['dog.png'], ['panda.png']])
gr.Markdown(
"""
<p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>
"""
)
submit_button.click(fn=inference, inputs=input_image, outputs=label)
example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components)
demo.launch(enable_queue=True, cache_examples=True)
# inputs = gr.inputs.Image(type='pil')
# label = gr.outputs.Label(num_top_classes=5)
# title = "UniFormer-S"
# description = "Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>"
# gr.Interface(
# inference, inputs, outputs=label,
# title=title, description=description, article=article,
# examples=[['library.jpeg'], ['cat.png'], ['dog.png'], ['panda.png']]
# ).launch(enable_queue=True, cache_examples=True)
|