File size: 7,435 Bytes
129af76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import json
import random
import string

import gradio as gr
import torch
import requests
from transformers import pipeline, set_seed
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging

import sys
import gradio as gr
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM

DEBUG = os.environ.get("DEBUG", "false")[0] in "ty1"
HF_AUTH_TOKEN = os.environ.get("HF_AUTH_TOKEN", None)
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 1024))

HEADER = """
# Poor Man's Duplex
""".strip()

FOOTER = """
<div align=center>
<img src="https://visitor-badge.glitch.me/badge?page_id=spaces/bertin-project/bertin-gpt-j-6B"/>
<div align=center>
""".strip()

asr_model_name_es = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish"
model_instance_es = AutoModelForCTC.from_pretrained(asr_model_name_es)
processor_es = Wav2Vec2ProcessorWithLM.from_pretrained(asr_model_name_es)
asr_es = pipeline(
    "automatic-speech-recognition",
    model=model_instance_es,
    tokenizer=processor_es.tokenizer,
    feature_extractor=processor_es.feature_extractor,
    decoder=processor_es.decoder
)
tts_model_name = "facebook/tts_transformer-es-css10"
speak_es = gr.Interface.load(f"huggingface/{tts_model_name}")
transcribe_es = lambda input_file: asr_es(input_file, chunk_length_s=5, stride_length_s=1)["text"]
def generate_es(text, **kwargs):
    # max_length=100, top_k=100, top_p=50, temperature=0.95, do_sample=True, do_clean=True
    api_uri = "https://hf.space/embed/bertin-project/bertin-gpt-j-6B/+/api/predict/"
    response = requests.post(api_uri, data=json.dumps({"data": [text, 100, 100, 50, 0.95, True, True]}))
    if response.ok:
        print(response.json())
        return response.json()["data"][0]
    else:
        return ""

asr_model_name_en = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
model_instance_en = AutoModelForCTC.from_pretrained(asr_model_name_en)
processor_en = Wav2Vec2ProcessorWithLM.from_pretrained(asr_model_name_en)
asr_en = pipeline(
    "automatic-speech-recognition",
    model=model_instance_en,
    tokenizer=processor_en.tokenizer,
    feature_extractor=processor_en.feature_extractor,
    decoder=processor_en.decoder
)
tts_model_name = "facebook/fastspeech2-en-200_speaker-cv4"
speak_en = gr.Interface.load(f"huggingface/{tts_model_name}")
transcribe_en = lambda input_file: asr_en(input_file, chunk_length_s=5, stride_length_s=1)["text"]
generate_iface = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B")

def generate_en(text, **kwargs):
    response = generate_iface(text)
    print(response)
    return response or ""


def select_lang(lang):
    if lang.lower() == "spanish":
        return generate_es, transcribe_es, speak_es
    else:
        return generate_en, transcribe_en, speak_en


def select_lang_vars(lang):
    if lang.lower() == "spanish":
        AGENT = "BERTIN"
        USER = "ENTREVISTADOR"
        CONTEXT = """La siguiente conversación es un extracto de una entrevista a {AGENT} celebrada en Madrid para Radio Televisión Española:

{USER}: Bienvenido, {AGENT}. Un placer tenerlo hoy con nosotros.
{AGENT}: Gracias. El placer es mío."""
    else:
        AGENT = "ELEUTHER"
        USER = "INTERVIEWER"
        CONTEXT = """The next conversation is an excerpt from an interview to {AGENT} that appeared in the New York Times:

{USER}: Welcome, {AGENT}. It is a pleasure to have you here today.
{AGENT}: Thanks. The pleasure is mine."""

    return AGENT, USER, CONTEXT



def chat_with_gpt(lang, agent, user, context, audio_in, history):
    generate, transcribe, speak = select_lang(lang)
    AGENT, USER, _ = select_lang_vars(lang)
    user_message = transcribe(audio_in)
    # agent = AGENT
    # user = USER
    generation_kwargs = {
        "max_length": 25,
        # "top_k": top_k,
        # "top_p": top_p,
        # "temperature": temperature,
        # "do_sample": do_sample,
        # "do_clean": do_clean,
        # "num_return_sequences": 1,
        # "return_full_text": False,
    }
    message = user_message.split(" ", 1)[0].capitalize() + " " + user_message.split(" ", 1)[-1]
    history = history or []  #[(f"{user}: Bienvenido. Encantado de tenerle con nosotros.", f"{agent}: Un placer, muchas gracias por la invitación.")]
    context = context.format(USER=user or USER, AGENT=agent or AGENT).strip()
    if context[-1] not in ".:":
        context += "."
    context_length = len(context.split())
    history_take = 0
    history_context = "\n".join(f"{user}: {history_message.capitalize()}.\n{agent}: {history_response}." for history_message, history_response in history[-len(history) + history_take:])
    while len(history_context.split()) > MAX_LENGTH - (generation_kwargs["max_length"] + context_length):
        history_take += 1
        history_context = "\n".join(f"{user}: {history_message.capitalize()}.\n{agent}: {history_response}." for history_message, history_response in history[-len(history) + history_take:])
        if history_take >= MAX_LENGTH:
            break
    context += history_context
    for _ in range(5):
        response = generate(f"{context}\n\n{user}: {message}.\n", **generation_kwargs)
        if DEBUG:
            print("\n-----" + response + "-----\n")
        response = response.split("\n")[-1]
        if agent in response and response.split(agent)[-1]:
            response = response.split(agent)[-1]
        if user in response and response.split(user)[-1]:
            response = response.split(user)[-1]
        if response and response[0] in string.punctuation:
            response = response[1:].strip()
        if response.strip().startswith(f"{user}: {message}"):
            response = response.strip().split(f"{user}: {message}")[-1]
        if response.replace(".", "").strip() and message.replace(".", "").strip() != response.replace(".", "").strip():
            break
    if DEBUG:
        print()
        print("CONTEXT:")
        print(context)
        print()
        print("MESSAGE")
        print(message)
        print()
        print("RESPONSE:")
        print(response)
    if not response.strip():
        response = "Lo siento, no puedo hablar ahora" if lang.lower() == "Spanish" else "Sorry, can't talk right now"
    history.append((user_message, response))
    return history, history, speak(response)


with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    lang = gr.Radio(label="Language", choices=["English", "Spanish"], default="English", type="value")
    AGENT, USER, CONTEXT = select_lang_vars("English")
    context = gr.Textbox(label="Context", lines=5, value=CONTEXT)
    with gr.Row():
        audio_in = gr.Audio(label="User", source="microphone", type="filepath")
        audio_out = gr.Audio(label="Agent", interactive=False)
        # chat_btn = gr.Button("Submit")
    with gr.Row():
        user = gr.Textbox(label="User", value=USER)
        agent = gr.Textbox(label="Agent", value=AGENT)
    lang.change(select_lang_vars, inputs=[lang], outputs=[agent, user, context])
    history = gr.Variable(value=[])
    chatbot = gr.Variable()  # gr.Chatbot(color_map=("green", "gray"), visible=False)
    # chat_btn.click(chat_with_gpt, inputs=[lang, agent, user, context, audio_in, history], outputs=[chatbot, history, audio_out])
    audio_in.change(chat_with_gpt, inputs=[lang, agent, user, context, audio_in, history], outputs=[chatbot, history, audio_out])
    gr.Markdown(FOOTER)

demo.launch()