Spaces:
Runtime error
Runtime error
Commit
·
ef0bdc3
1
Parent(s):
658b022
Working demo with history
Browse files- gradio_demo.py +104 -33
gradio_demo.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
from transformers import pipeline
|
| 4 |
-
|
|
|
|
| 5 |
model_checkpoint = "distilgpt2"
|
| 6 |
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
|
@@ -9,52 +10,122 @@ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
|
| 9 |
generate = pipeline("text-generation",
|
| 10 |
model="arjunpatel/distilgpt2-finetuned-pokemon-moves",
|
| 11 |
tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
def filter_text(generated_move):
|
| 15 |
-
# removes any moves that follow after the genrated move
|
| 16 |
-
print(generated_move)
|
| 17 |
-
sentences = generated_move.split(".")
|
| 18 |
-
if len(sentences) > 2:
|
| 19 |
-
ret_set = " ".join(sentences[0:1])
|
| 20 |
-
else:
|
| 21 |
-
ret_set = generated_move
|
| 22 |
-
return ret_set
|
| 23 |
|
| 24 |
-
def
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
-
# # demo = gr.Interface(fn=greet, inputs = "text", outputs="text")
|
| 32 |
-
#
|
| 33 |
-
# gr.Interface(fn=create_move,
|
| 34 |
-
# inputs="text", outputs="text").launch()
|
| 35 |
-
# # demo.launch()
|
| 36 |
|
| 37 |
-
def filler_move(test_move, temperature):
|
| 38 |
-
return test_move + " with temperature " + str(temperature)
|
| 39 |
|
| 40 |
demo = gr.Blocks()
|
| 41 |
|
| 42 |
with demo:
|
| 43 |
-
gr.Markdown("What's that Pokemon Move
|
|
|
|
|
|
|
| 44 |
with gr.Tabs():
|
| 45 |
with gr.TabItem("Standard Generation"):
|
| 46 |
with gr.Row():
|
| 47 |
-
text_input_baseline = gr.Textbox(
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
text_button_baseline = gr.Button("Create my move!")
|
| 50 |
-
with gr.TabItem("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
with gr.Row():
|
| 52 |
-
temperature = gr.Slider(minimum
|
| 53 |
-
label
|
| 54 |
-
|
| 55 |
-
|
|
|
|
| 56 |
text_button_temp = gr.Button("Create my move!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
from transformers import pipeline
|
| 4 |
+
from utils import format_moves
|
| 5 |
+
import pandas as pd
|
| 6 |
model_checkpoint = "distilgpt2"
|
| 7 |
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
|
|
|
| 10 |
generate = pipeline("text-generation",
|
| 11 |
model="arjunpatel/distilgpt2-finetuned-pokemon-moves",
|
| 12 |
tokenizer=tokenizer)
|
| 13 |
+
# load in the model
|
| 14 |
+
seed_text = "This move is called "
|
| 15 |
+
import tensorflow as tf
|
| 16 |
+
tf.random.set_seed(0)
|
| 17 |
+
|
| 18 |
+
#need a function to sanitize imputs
|
| 19 |
+
# - remove extra spaces
|
| 20 |
+
# - make sure each word is capitalized
|
| 21 |
+
# - format the moves such that it's clearer when each move is listed
|
| 22 |
+
# - play with the max length parameter abit, and try to remove sentences that don't end in periods.
|
| 23 |
+
|
| 24 |
+
def update_history(df, move_name, move_desc, generation, parameters):
|
| 25 |
+
# needs to format each move description with new lines to cut down on width
|
| 26 |
+
|
| 27 |
+
new_row = [{"Move Name": move_name,
|
| 28 |
+
"Move Description": move_desc,
|
| 29 |
+
"Generation Type": generation,
|
| 30 |
+
"Parameters": parameters}]
|
| 31 |
+
return pd.concat([df, pd.DataFrame(new_row)])
|
| 32 |
+
|
| 33 |
+
def create_move(move, history):
|
| 34 |
+
generated_move = format_moves(generate(seed_text + move, num_return_sequences=1))
|
| 35 |
+
return generated_move, update_history(history, move, generated_move,
|
| 36 |
+
"baseline", "None")
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def create_greedy_search_move(move):
|
| 40 |
+
generated_move = generate(seed_text + move, do_sample=False)
|
| 41 |
+
return format_moves(generated_move)
|
| 42 |
+
|
| 43 |
|
| 44 |
+
def create_beam_search_move(move, num_beams=2):
|
| 45 |
+
generated_move = generate(seed_text + move, num_beams=num_beams,
|
| 46 |
+
num_return_sequences=1,
|
| 47 |
+
do_sample=False, early_stopping=True)
|
| 48 |
+
return format_moves(generated_move)
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
def create_sampling_search_move(move, do_sample=True, temperature=1):
|
| 52 |
+
generated_move = generate(seed_text + move, do_sample=do_sample, temperature= float(temperature),
|
| 53 |
+
num_return_sequences=1, topk=0)
|
| 54 |
+
return format_moves(generated_move)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def create_top_search_move(move, topk=0, topp=0.90):
|
| 58 |
+
generated_move = generate(
|
| 59 |
+
seed_text + move,
|
| 60 |
+
do_sample=True,
|
| 61 |
+
num_return_sequences=1,
|
| 62 |
+
top_k=topk,
|
| 63 |
+
top_p=topp,
|
| 64 |
+
force_word_ids=tokenizer.encode("The user", return_tensors='tf'))
|
| 65 |
+
return format_moves(generated_move)
|
| 66 |
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
|
|
|
|
|
|
| 69 |
|
| 70 |
demo = gr.Blocks()
|
| 71 |
|
| 72 |
with demo:
|
| 73 |
+
gr.Markdown("<h1><center>What's that Pokemon Move?</center></h1>")
|
| 74 |
+
gr.Markdown("This Gradio demo is a small GPT-2 model fine-tuned on a dataset of Pokemon moves! It'll generate a move description given a name.")
|
| 75 |
+
gr.Markdown("Enter a two to three word Pokemon Move name of your imagination below!")
|
| 76 |
with gr.Tabs():
|
| 77 |
with gr.TabItem("Standard Generation"):
|
| 78 |
with gr.Row():
|
| 79 |
+
text_input_baseline = gr.Textbox(label = "Move",
|
| 80 |
+
placeholder = "Type a two or three word move name here! Try \"Wonder Shield\"!")
|
| 81 |
+
text_output_baseline = gr.Textbox(label = "Move Description",
|
| 82 |
+
placeholder= "Leave this blank!")
|
| 83 |
text_button_baseline = gr.Button("Create my move!")
|
| 84 |
+
with gr.TabItem("Greedy Search"):
|
| 85 |
+
gr.Markdown("This tab lets you learn about using greedy search!")
|
| 86 |
+
with gr.Row():
|
| 87 |
+
text_input_greedy = gr.Textbox(label="Move")
|
| 88 |
+
text_output_greedy = gr.Textbox(label="Move Description")
|
| 89 |
+
text_button_greedy = gr.Button("Create my move!")
|
| 90 |
+
with gr.TabItem("Beam Search"):
|
| 91 |
+
gr.Markdown("This tab lets you learn about using beam search!")
|
| 92 |
+
with gr.Row():
|
| 93 |
+
num_beams = gr.Slider(minimum=2, maximum=10, value=2, step=1,
|
| 94 |
+
label="Number of Beams")
|
| 95 |
+
text_input_beam = gr.Textbox(label="Move")
|
| 96 |
+
text_output_beam = gr.Textbox(label="Move Description")
|
| 97 |
+
text_button_beam = gr.Button("Create my move!")
|
| 98 |
+
with gr.TabItem("Sampling and Temperature Search"):
|
| 99 |
+
gr.Markdown("This tab lets you experiment with adjusting the temperature of the generator")
|
| 100 |
with gr.Row():
|
| 101 |
+
temperature = gr.Slider(minimum=0.3, maximum=4.0, value=1.0, step=0.1,
|
| 102 |
+
label="Temperature")
|
| 103 |
+
sample_boolean = gr.Checkbox(label = "Enable Sampling?")
|
| 104 |
+
text_input_temp = gr.Textbox(label="Move")
|
| 105 |
+
text_output_temp = gr.Textbox(label="Move Description")
|
| 106 |
text_button_temp = gr.Button("Create my move!")
|
| 107 |
+
with gr.TabItem("Top K and Top P Sampling"):
|
| 108 |
+
gr.Markdown("This tab lets you learn about Top K and Top P Sampling")
|
| 109 |
+
with gr.Row():
|
| 110 |
+
topk = gr.Slider(minimum=10, maximum=100, value=50, step=5,
|
| 111 |
+
label="Top K")
|
| 112 |
+
topp = gr.Slider(minimum=0.10, maximum=0.95, value=1, step=0.05,
|
| 113 |
+
label="Top P")
|
| 114 |
+
text_input_top = gr.Textbox(label="Move")
|
| 115 |
+
text_output_top = gr.Textbox(label="Move Description")
|
| 116 |
+
text_button_top = gr.Button("Create my move!")
|
| 117 |
+
with gr.Box():
|
| 118 |
+
# Displays a dataframe with the history of moves generated, with parameters
|
| 119 |
+
history = gr.Dataframe(headers= ["Move Name", "Move Description", "Generation Type", "Parameters"])
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
text_button_baseline.click(create_move, inputs=[text_input_baseline, history], outputs=[text_output_baseline, history])
|
| 123 |
+
text_button_greedy.click(create_greedy_search_move, inputs=text_input_greedy, outputs=text_output_greedy)
|
| 124 |
+
text_button_temp.click(create_sampling_search_move, inputs=[text_input_temp, sample_boolean, temperature],
|
| 125 |
+
outputs=text_output_temp)
|
| 126 |
+
text_button_beam.click(create_beam_search_move, inputs=[text_input_beam, num_beams], outputs=text_output_beam)
|
| 127 |
+
text_button_top.click(create_top_search_move, inputs=[text_input_top, topk, topp], outputs=text_output_top)
|
| 128 |
|
| 129 |
+
#Whenever any of the output boxes updates, take that output box and add it to the History dataframe
|
| 130 |
+
#text_output_baseline.change(update_history, inputs = [history, text_input_baseline, text_output_baseline], outputs = history)
|
| 131 |
+
demo.launch(share=True)
|