File size: 12,326 Bytes
732b8c4
 
 
 
 
 
 
 
e5a1104
732b8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964e0fc
732b8c4
1925cad
5e29a19
3288c2b
732b8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
c3cf91d
732b8c4
 
 
 
a6da7af
732b8c4
 
a88186d
f9507c6
732b8c4
 
 
 
 
f9507c6
 
732b8c4
 
 
d8edde0
732b8c4
 
 
964e0fc
732b8c4
 
 
 
 
 
964e0fc
732b8c4
 
03667b4
732b8c4
 
 
 
 
 
 
 
 
 
 
964e0fc
 
03667b4
 
 
 
964e0fc
732b8c4
 
 
 
 
 
03667b4
 
964e0fc
03667b4
 
810fb9a
732b8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03667b4
d8edde0
03667b4
 
732b8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866f637
 
 
 
d8edde0
866f637
 
 
e5cbfdc
866f637
 
bc42778
b61aba8
bc42778
b61aba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e29a19
 
b61aba8
 
 
964e0fc
866f637
b61aba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866f637
 
 
964e0fc
866f637
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
import sys
import gradio as gr
os.system('git clone https://github.com/openai/CLIP')
os.system('git clone https://github.com/crowsonkb/guided-diffusion')
os.system('pip install -e ./CLIP')
os.system('pip install -e ./guided-diffusion')
os.system('pip install lpips')
os.system("curl -OL 'https://github.com/Sxela/DiscoDiffusion-Warp/releases/download/v0.1.1/256x256_openai_comics_faces_v2.by_alex_spirin_114k.pt'")




import io
import math
import sys
import lpips
from PIL import Image
import requests
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm
sys.path.append('./CLIP')
sys.path.append('./guided-diffusion')
import clip
from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
import numpy as np
import imageio

torch.hub.download_url_to_file('https://images.pexels.com/photos/68767/divers-underwater-ocean-swim-68767.jpeg', 'face.jpeg')

def fetch(url_or_path):
    if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
        r = requests.get(url_or_path)
        r.raise_for_status()
        fd = io.BytesIO()
        fd.write(r.content)
        fd.seek(0)
        return fd
    return open(url_or_path, 'rb')
def parse_prompt(prompt):
    if prompt.startswith('http://') or prompt.startswith('https://'):
        vals = prompt.rsplit(':', 2)
        vals = [vals[0] + ':' + vals[1], *vals[2:]]
    else:
        vals = prompt.rsplit(':', 1)
    vals = vals + ['', '1'][len(vals):]
    return vals[0], float(vals[1])
class MakeCutouts(nn.Module):
    def __init__(self, cut_size, cutn, cut_pow=1.):
        super().__init__()
        self.cut_size = cut_size
        self.cutn = cutn
        self.cut_pow = cut_pow
    def forward(self, input):
        sideY, sideX = input.shape[2:4]
        max_size = min(sideX, sideY)
        min_size = min(sideX, sideY, self.cut_size)
        cutouts = []
        for _ in range(self.cutn):
            size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
            offsetx = torch.randint(0, sideX - size + 1, ())
            offsety = torch.randint(0, sideY - size + 1, ())
            cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
            cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
        return torch.cat(cutouts)
def spherical_dist_loss(x, y):
    x = F.normalize(x, dim=-1)
    y = F.normalize(y, dim=-1)
    return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def tv_loss(input):
    """L2 total variation loss, as in Mahendran et al."""
    input = F.pad(input, (0, 1, 0, 1), 'replicate')
    x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
    y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
    return (x_diff**2 + y_diff**2).mean([1, 2, 3])
def range_loss(input):
    return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3])
    
def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompts,timestep_respacing, cutn, im_prompt_weight):
    # Model settings
    skip_timesteps = min(skip_timesteps, timestep_respacing-1)
    skip_timesteps = int(timestep_respacing-1 - (timestep_respacing-1)*skip_timesteps/100)
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    model_config = model_and_diffusion_defaults()
    model_config.update({
          'attention_resolutions': '16',
          'class_cond': False,
          'diffusion_steps': 1000,
          'rescale_timesteps': True,
          'timestep_respacing': str(timestep_respacing),
          'image_size': 256,
          'learn_sigma': True,
          'noise_schedule': 'linear',
          'num_channels': 128,
          'num_heads': 1,
          'num_res_blocks': 2,
          'use_checkpoint': True,
          'use_fp16': False if device.type == 'cpu' else True,
          'use_scale_shift_norm': False,
      })

    # Load models
    print('Using fp16: ',model_config['use_fp16'])
    print('Using device:', device)
    model, diffusion = create_model_and_diffusion(**model_config)
    model.load_state_dict(torch.load('256x256_openai_comics_faces_v2.by_alex_spirin_114k.pt', map_location='cpu'))
    model.requires_grad_(False).eval().to(device).float()
    for name, param in model.named_parameters():
        if 'qkv' in name or 'norm' in name or 'proj' in name:
            param.requires_grad_()
    if model_config['use_fp16']:
        model.convert_to_fp16()
    else: model.convert_to_fp32()
    clip_model = clip.load('ViT-B/16', jit=False)[0].eval().requires_grad_(False).to(device).float()
    clip_size = clip_model.visual.input_resolution
    normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
                                     std=[0.26862954, 0.26130258, 0.27577711])
    
    
    all_frames = []
    prompts = [text]

    batch_size = 1
    clip_guidance_scale = clip_guidance_scale  # Controls how much the image should look like the prompt.
    tv_scale = tv_scale             # Controls the smoothness of the final output.
    range_scale = range_scale            # Controls how far out of range RGB values are allowed to be.
    cutn = cutn
    n_batches = 1

    skip_timesteps = skip_timesteps  # This needs to be between approx. 200 and 500 when using an init image.
                        # Higher values make the output look more like the init.
    init_scale = init_scale      # This enhances the effect of the init image, a good value is 1000.
    seed = seed
   
    if seed is not None:
        torch.manual_seed(seed)
    make_cutouts = MakeCutouts(clip_size, cutn)
    side_x = side_y = model_config['image_size']
    target_embeds, weights = [], []
    for prompt in prompts:
        txt, weight = parse_prompt(prompt)
        target_embeds.append(clip_model.encode_text(clip.tokenize(txt).to(device)).float())
        weights.append(weight)
    if image_prompts is not None:
        img = Image.fromarray(image_prompts).convert('RGB')
        img = TF.resize(img, min(side_x, side_y, *img.size), transforms.InterpolationMode.LANCZOS)
        batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
        embed = clip_model.encode_image(normalize(batch)).float()
        target_embeds.append(embed)
        weights.extend([im_prompt_weight / cutn] * cutn)
    target_embeds = torch.cat(target_embeds)
    weights = torch.tensor(weights, device=device)
    if weights.sum().abs() < 1e-3:
        raise RuntimeError('The weights must not sum to 0.')
    weights /= weights.sum().abs()
    init = None
    if init_image is not None:
        lpips_model = lpips.LPIPS(net='vgg').to(device)
        init = Image.fromarray(init_image).convert('RGB')
        init = init.resize((side_x, side_y), Image.LANCZOS)
        init = TF.to_tensor(init).to(device).unsqueeze(0).mul(2).sub(1)
    else: skip_timesteps = 0
    cur_t = None
    def cond_fn(x, t, y=None):
        with torch.enable_grad():
            x = x.detach().requires_grad_()
            n = x.shape[0]
            my_t = torch.ones([n], device=device, dtype=torch.long) * cur_t
            out = diffusion.p_mean_variance(model, x, my_t, clip_denoised=False, model_kwargs={'y': y})
            fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t]
            x_in = out['pred_xstart'] * fac + x * (1 - fac)
            clip_in = normalize(make_cutouts(x_in.add(1).div(2)))
            image_embeds = clip_model.encode_image(clip_in).float()
            dists = spherical_dist_loss(image_embeds.unsqueeze(1), target_embeds.unsqueeze(0))
            dists = dists.view([cutn, n, -1])
            losses = dists.mul(weights).sum(2).mean(0)
            tv_losses = tv_loss(x_in)
            range_losses = range_loss(out['pred_xstart'])
            loss = losses.sum() * clip_guidance_scale + tv_losses.sum() * tv_scale + range_losses.sum() * range_scale
            if init is not None and init_scale:

                init_losses = lpips_model(x_in, init)
                loss = loss + init_losses.sum() * init_scale
            return -torch.autograd.grad(loss, x)[0]
    if model_config['timestep_respacing'].startswith('ddim'):
        sample_fn = diffusion.ddim_sample_loop_progressive
    else:
        sample_fn = diffusion.p_sample_loop_progressive
    for i in range(n_batches):
        cur_t = diffusion.num_timesteps - skip_timesteps - 1
        samples = sample_fn(
            model,
            (batch_size, 3, side_y, side_x),
            clip_denoised=False,
            model_kwargs={},
            cond_fn=cond_fn,
            progress=True,
            skip_timesteps=skip_timesteps,
            init_image=init,
            randomize_class=True,
        )
        for j, sample in enumerate(samples):
            cur_t -= 1
            if j % 1 == 0 or cur_t == -1:
                print()
                for k, image in enumerate(sample['pred_xstart']):
                    img = TF.to_pil_image(image.add(1).div(2).clamp(0, 1))
                    all_frames.append(img)
                    tqdm.write(f'Batch {i}, step {j}, output {k}:')
    writer = imageio.get_writer('video.mp4', fps=5)
    for im in all_frames:
        writer.append_data(np.array(im))
    writer.close()
    return img, 'video.mp4'
    
demo = gr.Blocks()
with demo:
    gr.Markdown(
    """
    # CLIP Guided Openai Diffusion Faces Model 
    ### by [Alex Spirin](https://linktr.ee/devdef)
    Gradio Blocks demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them.
    Based on the original [Space](https://huggingface.co/spaces/EleutherAI/clip-guided-diffusion) by akhaliq. 
    ![visitors](https://visitor-badge.glitch.me/badge?page_id=sxela_dd_custom_model_hf_space)
    """)

    with gr.Row():
          text = gr.Textbox(placeholder="Enter a description of a face", label='Text prompt', value="A beautiful girl by Greg Rutkowski")
    with gr.Tabs():
      with gr.TabItem("Settings"):
        with gr.Row():
          # with gr.Group():
            with gr.Column():
              clip_guidance_scale = gr.Slider(minimum=0, maximum=3000, step=1, value=600, label="Prompt strength")
              tv_scale = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Smoothness")
              range_scale = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Compress color range")
          # with gr.Group():
            with gr.Column():
              timestep_respacing = gr.Slider(minimum=25, maximum=100, step=1, value=25, label="Timestep respacing")
              cutn = gr.Slider(minimum=4, maximum=32, step=1, value=16, label="cutn")
              seed = gr.Number(value=0, label="Seed")
      with gr.TabItem("Input images"):
        with gr.Row():
          # with gr.Group():
            with gr.Column():
              init_image = gr.Image(source="upload", label='initial image (optional)')
              init_scale = gr.Slider(minimum=0, maximum=1000, step=10, value=0, label="Look like the image above")
              skip_timesteps = gr.Slider(minimum=0, maximum=100, step=1, value=30, label="Style strength, % (0 = initial image)")
          # with gr.Group():
            with gr.Column():
              image_prompts = gr.Image(source="upload", label='image prompt (optional)')
              im_prompt_weight = gr.Slider(minimum=0, maximum=10, step=1, value=1, label="Look like the image above")

      with gr.Group():
        with gr.Row(): 
            gr.Markdown(
          """
            ### Press Run to Run :D
          ----
          """)
        with gr.Row():                          
            run_button = gr.Button("Run!")
        with gr.Row(): 
            gr.Markdown(
          """
            ### Results
          ---
          """)
        with gr.Row():
            output_image = gr.Image(label='Output image', type='numpy')
            output_video = gr.Video(label='Output video')

    outputs=[output_image,output_video]
    
    run_button.click(inference, inputs=[text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompts,timestep_respacing, cutn, im_prompt_weight], outputs=outputs)

demo.launch(enable_queue=True)