Spaces:
Runtime error
Runtime error
Refactor
Browse files
app.py
CHANGED
|
@@ -8,7 +8,7 @@ import tarfile
|
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
|
| 11 |
-
from model import
|
| 12 |
|
| 13 |
DESCRIPTION = '''# ViTPose
|
| 14 |
|
|
@@ -44,8 +44,8 @@ def main():
|
|
| 44 |
|
| 45 |
extract_tar()
|
| 46 |
|
| 47 |
-
det_model =
|
| 48 |
-
pose_model =
|
| 49 |
|
| 50 |
with gr.Blocks(theme=args.theme, css='style.css') as demo:
|
| 51 |
gr.Markdown(DESCRIPTION)
|
|
@@ -59,7 +59,7 @@ def main():
|
|
| 59 |
type='numpy')
|
| 60 |
with gr.Row():
|
| 61 |
detector_name = gr.Dropdown(list(
|
| 62 |
-
det_model.
|
| 63 |
value=det_model.model_name,
|
| 64 |
label='Detector')
|
| 65 |
with gr.Row():
|
|
@@ -68,7 +68,9 @@ def main():
|
|
| 68 |
with gr.Column():
|
| 69 |
with gr.Row():
|
| 70 |
detection_visualization = gr.Image(
|
| 71 |
-
label='Detection Result',
|
|
|
|
|
|
|
| 72 |
with gr.Row():
|
| 73 |
vis_det_score_threshold = gr.Slider(
|
| 74 |
0,
|
|
@@ -91,7 +93,7 @@ def main():
|
|
| 91 |
with gr.Column():
|
| 92 |
with gr.Row():
|
| 93 |
pose_model_name = gr.Dropdown(
|
| 94 |
-
list(pose_model.
|
| 95 |
value=pose_model.model_name,
|
| 96 |
label='Pose Model')
|
| 97 |
det_score_threshold = gr.Slider(
|
|
@@ -106,7 +108,8 @@ def main():
|
|
| 106 |
with gr.Column():
|
| 107 |
with gr.Row():
|
| 108 |
pose_visualization = gr.Image(label='Result',
|
| 109 |
-
type='numpy'
|
|
|
|
| 110 |
with gr.Row():
|
| 111 |
vis_kpt_score_threshold = gr.Slider(
|
| 112 |
0,
|
|
@@ -131,11 +134,12 @@ def main():
|
|
| 131 |
|
| 132 |
gr.Markdown(FOOTER)
|
| 133 |
|
| 134 |
-
detector_name.change(fn=det_model.
|
| 135 |
inputs=detector_name,
|
| 136 |
outputs=None)
|
| 137 |
-
detect_button.click(fn=det_model.
|
| 138 |
inputs=[
|
|
|
|
| 139 |
input_image,
|
| 140 |
vis_det_score_threshold,
|
| 141 |
],
|
|
@@ -151,11 +155,12 @@ def main():
|
|
| 151 |
],
|
| 152 |
outputs=detection_visualization)
|
| 153 |
|
| 154 |
-
pose_model_name.change(fn=pose_model.
|
| 155 |
inputs=pose_model_name,
|
| 156 |
outputs=None)
|
| 157 |
-
predict_button.click(fn=pose_model.
|
| 158 |
inputs=[
|
|
|
|
| 159 |
input_image,
|
| 160 |
det_preds,
|
| 161 |
det_score_threshold,
|
|
|
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
|
| 11 |
+
from model import AppDetModel, AppPoseModel
|
| 12 |
|
| 13 |
DESCRIPTION = '''# ViTPose
|
| 14 |
|
|
|
|
| 44 |
|
| 45 |
extract_tar()
|
| 46 |
|
| 47 |
+
det_model = AppDetModel(device=args.device)
|
| 48 |
+
pose_model = AppPoseModel(device=args.device)
|
| 49 |
|
| 50 |
with gr.Blocks(theme=args.theme, css='style.css') as demo:
|
| 51 |
gr.Markdown(DESCRIPTION)
|
|
|
|
| 59 |
type='numpy')
|
| 60 |
with gr.Row():
|
| 61 |
detector_name = gr.Dropdown(list(
|
| 62 |
+
det_model.MODEL_DICT.keys()),
|
| 63 |
value=det_model.model_name,
|
| 64 |
label='Detector')
|
| 65 |
with gr.Row():
|
|
|
|
| 68 |
with gr.Column():
|
| 69 |
with gr.Row():
|
| 70 |
detection_visualization = gr.Image(
|
| 71 |
+
label='Detection Result',
|
| 72 |
+
type='numpy',
|
| 73 |
+
elem_id='det-result')
|
| 74 |
with gr.Row():
|
| 75 |
vis_det_score_threshold = gr.Slider(
|
| 76 |
0,
|
|
|
|
| 93 |
with gr.Column():
|
| 94 |
with gr.Row():
|
| 95 |
pose_model_name = gr.Dropdown(
|
| 96 |
+
list(pose_model.MODEL_DICT.keys()),
|
| 97 |
value=pose_model.model_name,
|
| 98 |
label='Pose Model')
|
| 99 |
det_score_threshold = gr.Slider(
|
|
|
|
| 108 |
with gr.Column():
|
| 109 |
with gr.Row():
|
| 110 |
pose_visualization = gr.Image(label='Result',
|
| 111 |
+
type='numpy',
|
| 112 |
+
elem_id='pose-result')
|
| 113 |
with gr.Row():
|
| 114 |
vis_kpt_score_threshold = gr.Slider(
|
| 115 |
0,
|
|
|
|
| 134 |
|
| 135 |
gr.Markdown(FOOTER)
|
| 136 |
|
| 137 |
+
detector_name.change(fn=det_model.set_model,
|
| 138 |
inputs=detector_name,
|
| 139 |
outputs=None)
|
| 140 |
+
detect_button.click(fn=det_model.run,
|
| 141 |
inputs=[
|
| 142 |
+
detector_name,
|
| 143 |
input_image,
|
| 144 |
vis_det_score_threshold,
|
| 145 |
],
|
|
|
|
| 155 |
],
|
| 156 |
outputs=detection_visualization)
|
| 157 |
|
| 158 |
+
pose_model_name.change(fn=pose_model.set_model,
|
| 159 |
inputs=pose_model_name,
|
| 160 |
outputs=None)
|
| 161 |
+
predict_button.click(fn=pose_model.run,
|
| 162 |
inputs=[
|
| 163 |
+
pose_model_name,
|
| 164 |
input_image,
|
| 165 |
det_preds,
|
| 166 |
det_score_threshold,
|
model.py
CHANGED
|
@@ -29,46 +29,52 @@ HF_TOKEN = os.environ['HF_TOKEN']
|
|
| 29 |
|
| 30 |
|
| 31 |
class DetModel:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def __init__(self, device: str | torch.device):
|
| 33 |
self.device = torch.device(device)
|
| 34 |
-
self.
|
| 35 |
self.model_name = 'YOLOX-l'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
def
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
'config':
|
| 41 |
-
'mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py',
|
| 42 |
-
'model':
|
| 43 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth',
|
| 44 |
-
},
|
| 45 |
-
'YOLOX-s': {
|
| 46 |
-
'config':
|
| 47 |
-
'mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py',
|
| 48 |
-
'model':
|
| 49 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth',
|
| 50 |
-
},
|
| 51 |
-
'YOLOX-l': {
|
| 52 |
-
'config':
|
| 53 |
-
'mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py',
|
| 54 |
-
'model':
|
| 55 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
|
| 56 |
-
},
|
| 57 |
-
'YOLOX-x': {
|
| 58 |
-
'config':
|
| 59 |
-
'mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py',
|
| 60 |
-
'model':
|
| 61 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth',
|
| 62 |
-
},
|
| 63 |
-
}
|
| 64 |
-
models = {
|
| 65 |
-
key: init_detector(dic['config'], dic['model'], device=self.device)
|
| 66 |
-
for key, dic in model_dict.items()
|
| 67 |
-
}
|
| 68 |
-
return models
|
| 69 |
-
|
| 70 |
-
def set_model_name(self, name: str) -> None:
|
| 71 |
self.model_name = name
|
|
|
|
| 72 |
|
| 73 |
def detect_and_visualize(
|
| 74 |
self, image: np.ndarray,
|
|
@@ -79,8 +85,7 @@ class DetModel:
|
|
| 79 |
|
| 80 |
def detect(self, image: np.ndarray) -> list[np.ndarray]:
|
| 81 |
image = image[:, :, ::-1] # RGB -> BGR
|
| 82 |
-
|
| 83 |
-
out = inference_detector(model, image)
|
| 84 |
return out
|
| 85 |
|
| 86 |
def visualize_detection_results(
|
|
@@ -88,60 +93,71 @@ class DetModel:
|
|
| 88 |
image: np.ndarray,
|
| 89 |
detection_results: list[np.ndarray],
|
| 90 |
score_threshold: float = 0.3) -> np.ndarray:
|
| 91 |
-
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)]
|
| 92 |
|
| 93 |
image = image[:, :, ::-1] # RGB -> BGR
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
mask_color=None)
|
| 101 |
return vis[:, :, ::-1] # BGR -> RGB
|
| 102 |
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
class PoseModel:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
def __init__(self, device: str | torch.device):
|
| 106 |
self.device = torch.device(device)
|
| 107 |
-
self.models = self._load_models()
|
| 108 |
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
},
|
| 127 |
-
'ViTPose-L (multi-task train, COCO)': {
|
| 128 |
-
'config':
|
| 129 |
-
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
| 130 |
-
'model': 'models/vitpose-l-multi-coco.pth',
|
| 131 |
-
},
|
| 132 |
-
}
|
| 133 |
-
models = dict()
|
| 134 |
-
for key, dic in model_dict.items():
|
| 135 |
-
ckpt_path = huggingface_hub.hf_hub_download(
|
| 136 |
-
'hysts/ViTPose', dic['model'], use_auth_token=HF_TOKEN)
|
| 137 |
-
model = init_pose_model(dic['config'],
|
| 138 |
-
ckpt_path,
|
| 139 |
-
device=self.device)
|
| 140 |
-
models[key] = model
|
| 141 |
-
return models
|
| 142 |
-
|
| 143 |
-
def set_model_name(self, name: str) -> None:
|
| 144 |
self.model_name = name
|
|
|
|
| 145 |
|
| 146 |
def predict_pose_and_visualize(
|
| 147 |
self,
|
|
@@ -163,9 +179,8 @@ class PoseModel:
|
|
| 163 |
det_results: list[np.ndarray],
|
| 164 |
box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]:
|
| 165 |
image = image[:, :, ::-1] # RGB -> BGR
|
| 166 |
-
model = self.models[self.model_name]
|
| 167 |
person_results = process_mmdet_results(det_results, 1)
|
| 168 |
-
out, _ = inference_top_down_pose_model(model,
|
| 169 |
image,
|
| 170 |
person_results=person_results,
|
| 171 |
bbox_thr=box_score_threshold,
|
|
@@ -179,11 +194,25 @@ class PoseModel:
|
|
| 179 |
vis_dot_radius: int = 4,
|
| 180 |
vis_line_thickness: int = 1) -> np.ndarray:
|
| 181 |
image = image[:, :, ::-1] # RGB -> BGR
|
| 182 |
-
|
| 183 |
-
vis = vis_pose_result(model,
|
| 184 |
image,
|
| 185 |
pose_results,
|
| 186 |
kpt_score_thr=kpt_score_threshold,
|
| 187 |
radius=vis_dot_radius,
|
| 188 |
thickness=vis_line_thickness)
|
| 189 |
return vis[:, :, ::-1] # BGR -> RGB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
class DetModel:
|
| 32 |
+
MODEL_DICT = {
|
| 33 |
+
'YOLOX-tiny': {
|
| 34 |
+
'config':
|
| 35 |
+
'mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py',
|
| 36 |
+
'model':
|
| 37 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth',
|
| 38 |
+
},
|
| 39 |
+
'YOLOX-s': {
|
| 40 |
+
'config':
|
| 41 |
+
'mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py',
|
| 42 |
+
'model':
|
| 43 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth',
|
| 44 |
+
},
|
| 45 |
+
'YOLOX-l': {
|
| 46 |
+
'config':
|
| 47 |
+
'mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py',
|
| 48 |
+
'model':
|
| 49 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
|
| 50 |
+
},
|
| 51 |
+
'YOLOX-x': {
|
| 52 |
+
'config':
|
| 53 |
+
'mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py',
|
| 54 |
+
'model':
|
| 55 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth',
|
| 56 |
+
},
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
def __init__(self, device: str | torch.device):
|
| 60 |
self.device = torch.device(device)
|
| 61 |
+
self._load_all_models_once()
|
| 62 |
self.model_name = 'YOLOX-l'
|
| 63 |
+
self.model = self._load_model(self.model_name)
|
| 64 |
+
|
| 65 |
+
def _load_all_models_once(self) -> None:
|
| 66 |
+
for name in self.MODEL_DICT:
|
| 67 |
+
self._load_model(name)
|
| 68 |
+
|
| 69 |
+
def _load_model(self, name: str) -> nn.Module:
|
| 70 |
+
dic = self.MODEL_DICT[name]
|
| 71 |
+
return init_detector(dic['config'], dic['model'], device=self.device)
|
| 72 |
|
| 73 |
+
def set_model(self, name: str) -> None:
|
| 74 |
+
if name == self.model_name:
|
| 75 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
self.model_name = name
|
| 77 |
+
self.model = self._load_model(name)
|
| 78 |
|
| 79 |
def detect_and_visualize(
|
| 80 |
self, image: np.ndarray,
|
|
|
|
| 85 |
|
| 86 |
def detect(self, image: np.ndarray) -> list[np.ndarray]:
|
| 87 |
image = image[:, :, ::-1] # RGB -> BGR
|
| 88 |
+
out = inference_detector(self.model, image)
|
|
|
|
| 89 |
return out
|
| 90 |
|
| 91 |
def visualize_detection_results(
|
|
|
|
| 93 |
image: np.ndarray,
|
| 94 |
detection_results: list[np.ndarray],
|
| 95 |
score_threshold: float = 0.3) -> np.ndarray:
|
| 96 |
+
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)] * 79
|
| 97 |
|
| 98 |
image = image[:, :, ::-1] # RGB -> BGR
|
| 99 |
+
vis = self.model.show_result(image,
|
| 100 |
+
person_det,
|
| 101 |
+
score_thr=score_threshold,
|
| 102 |
+
bbox_color=None,
|
| 103 |
+
text_color=(200, 200, 200),
|
| 104 |
+
mask_color=None)
|
|
|
|
| 105 |
return vis[:, :, ::-1] # BGR -> RGB
|
| 106 |
|
| 107 |
|
| 108 |
+
class AppDetModel(DetModel):
|
| 109 |
+
def run(self, model_name: str, image: np.ndarray,
|
| 110 |
+
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
| 111 |
+
self.set_model(model_name)
|
| 112 |
+
return self.detect_and_visualize(image, score_threshold)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
class PoseModel:
|
| 116 |
+
MODEL_DICT = {
|
| 117 |
+
'ViTPose-B (single-task train)': {
|
| 118 |
+
'config':
|
| 119 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
| 120 |
+
'model': 'models/vitpose-b.pth',
|
| 121 |
+
},
|
| 122 |
+
'ViTPose-L (single-task train)': {
|
| 123 |
+
'config':
|
| 124 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
| 125 |
+
'model': 'models/vitpose-l.pth',
|
| 126 |
+
},
|
| 127 |
+
'ViTPose-B (multi-task train, COCO)': {
|
| 128 |
+
'config':
|
| 129 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
| 130 |
+
'model': 'models/vitpose-b-multi-coco.pth',
|
| 131 |
+
},
|
| 132 |
+
'ViTPose-L (multi-task train, COCO)': {
|
| 133 |
+
'config':
|
| 134 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
| 135 |
+
'model': 'models/vitpose-l-multi-coco.pth',
|
| 136 |
+
},
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
def __init__(self, device: str | torch.device):
|
| 140 |
self.device = torch.device(device)
|
|
|
|
| 141 |
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
| 142 |
+
self.model = self._load_model(self.model_name)
|
| 143 |
+
|
| 144 |
+
def _load_all_models_once(self) -> None:
|
| 145 |
+
for name in self.MODEL_DICT:
|
| 146 |
+
self._load_model(name)
|
| 147 |
+
|
| 148 |
+
def _load_model(self, name: str) -> nn.Module:
|
| 149 |
+
dic = self.MODEL_DICT[name]
|
| 150 |
+
ckpt_path = huggingface_hub.hf_hub_download('hysts/ViTPose',
|
| 151 |
+
dic['model'],
|
| 152 |
+
use_auth_token=HF_TOKEN)
|
| 153 |
+
model = init_pose_model(dic['config'], ckpt_path, device=self.device)
|
| 154 |
+
return model
|
| 155 |
+
|
| 156 |
+
def set_model(self, name: str) -> None:
|
| 157 |
+
if name == self.model_name:
|
| 158 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
self.model_name = name
|
| 160 |
+
self.model = self._load_model(name)
|
| 161 |
|
| 162 |
def predict_pose_and_visualize(
|
| 163 |
self,
|
|
|
|
| 179 |
det_results: list[np.ndarray],
|
| 180 |
box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]:
|
| 181 |
image = image[:, :, ::-1] # RGB -> BGR
|
|
|
|
| 182 |
person_results = process_mmdet_results(det_results, 1)
|
| 183 |
+
out, _ = inference_top_down_pose_model(self.model,
|
| 184 |
image,
|
| 185 |
person_results=person_results,
|
| 186 |
bbox_thr=box_score_threshold,
|
|
|
|
| 194 |
vis_dot_radius: int = 4,
|
| 195 |
vis_line_thickness: int = 1) -> np.ndarray:
|
| 196 |
image = image[:, :, ::-1] # RGB -> BGR
|
| 197 |
+
vis = vis_pose_result(self.model,
|
|
|
|
| 198 |
image,
|
| 199 |
pose_results,
|
| 200 |
kpt_score_thr=kpt_score_threshold,
|
| 201 |
radius=vis_dot_radius,
|
| 202 |
thickness=vis_line_thickness)
|
| 203 |
return vis[:, :, ::-1] # BGR -> RGB
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class AppPoseModel(PoseModel):
|
| 207 |
+
def run(
|
| 208 |
+
self, model_name: str, image: np.ndarray,
|
| 209 |
+
det_results: list[np.ndarray], box_score_threshold: float,
|
| 210 |
+
kpt_score_threshold: float, vis_dot_radius: int,
|
| 211 |
+
vis_line_thickness: int
|
| 212 |
+
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
|
| 213 |
+
self.set_model(model_name)
|
| 214 |
+
return self.predict_pose_and_visualize(image, det_results,
|
| 215 |
+
box_score_threshold,
|
| 216 |
+
kpt_score_threshold,
|
| 217 |
+
vis_dot_radius,
|
| 218 |
+
vis_line_thickness)
|
style.css
CHANGED
|
@@ -1,7 +1,11 @@
|
|
| 1 |
h1 {
|
| 2 |
text-align: center;
|
| 3 |
}
|
| 4 |
-
div#result {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
max-width: 600px;
|
| 6 |
max-height: 600px;
|
| 7 |
}
|
|
|
|
| 1 |
h1 {
|
| 2 |
text-align: center;
|
| 3 |
}
|
| 4 |
+
div#det-result {
|
| 5 |
+
max-width: 600px;
|
| 6 |
+
max-height: 600px;
|
| 7 |
+
}
|
| 8 |
+
div#pose-result {
|
| 9 |
max-width: 600px;
|
| 10 |
max-height: 600px;
|
| 11 |
}
|