Spaces:
Running
Running
File size: 6,415 Bytes
7db4b63 7e0a48a 7db4b63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import os
import pickle
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
sys.path.insert(0, 'StyleGAN-Human')
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
return parser.parse_args()
class App:
def __init__(self, device: torch.device):
self.device = device
self.model = self.load_model('stylegan_human_v2_1024.pkl')
def load_model(self, file_name: str) -> nn.Module:
path = hf_hub_download('hysts/StyleGAN-Human',
f'models/{file_name}',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = pickle.load(f)['G_ema']
model.eval()
model.to(self.device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(self.device)
label = torch.zeros([1, model.c_dim], device=self.device)
model(z, label, force_fp32=True)
return model
def generate_z(self, z_dim: int, seed: int) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(self.device).float()
@torch.inference_mode()
def generate_single_image(self, seed: int,
truncation_psi: float) -> np.ndarray:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = self.generate_z(self.model.z_dim, seed)
label = torch.zeros([1, self.model.c_dim], device=self.device)
out = self.model(z,
label,
truncation_psi=truncation_psi,
force_fp32=True)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(
torch.uint8)
return out[0].cpu().numpy()
@torch.inference_mode()
def generate_interpolated_images(
self, seed0: int, psi0: float, seed1: int, psi1: float,
num_intermediate: int) -> list[np.ndarray]:
seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))
z0 = self.generate_z(self.model.z_dim, seed0)
z1 = self.generate_z(self.model.z_dim, seed1)
vec = z1 - z0
dvec = vec / (num_intermediate + 1)
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
dpsi = (psi1 - psi0) / (num_intermediate + 1)
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
label = torch.zeros([1, self.model.c_dim], device=self.device)
res = []
for z, psi in zip(zs, psis):
out = self.model(z, label, truncation_psi=psi, force_fp32=True)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(
torch.uint8)
out = out[0].cpu().numpy()
res.append(out)
return res
def main():
args = parse_args()
app = App(device=torch.device(args.device))
with gr.Blocks(theme=args.theme) as demo:
gr.Markdown('''<center><h1>StyleGAN-Human</h1></center>
This is a Blocks version of [this app](https://huggingface.co/spaces/hysts/StyleGAN-Human) and [this app](https://huggingface.co/spaces/hysts/StyleGAN-Human-Interpolation).
''')
with gr.Row():
with gr.Column():
with gr.Row():
seed1 = gr.Number(value=6876, label='Seed 1')
psi1 = gr.Slider(0,
2,
value=0.7,
step=0.05,
label='Truncation psi 1')
with gr.Row():
generate_button1 = gr.Button('Generate')
with gr.Row():
generated_image1 = gr.Image(type='numpy',
label='Generated Image 1')
with gr.Column():
with gr.Row():
seed2 = gr.Number(value=6886, label='Seed 2')
psi2 = gr.Slider(0,
2,
value=0.7,
step=0.05,
label='Truncation psi 2')
with gr.Row():
generate_button2 = gr.Button('Generate')
with gr.Row():
generated_image2 = gr.Image(type='numpy',
label='Generated Image 2')
with gr.Row():
with gr.Column():
with gr.Row():
num_frames = gr.Slider(
0,
41,
value=7,
step=1,
label='Number of Intermediate Frames')
with gr.Row():
interpolate_button = gr.Button('Interpolate')
with gr.Row():
interpolated_images = gr.Gallery(label='Output Images')
gr.Markdown(
'<center><img src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.stylegan-human" alt="visitor badge"/></center>'
)
generate_button1.click(app.generate_single_image,
inputs=[seed1, psi1],
outputs=generated_image1)
generate_button2.click(app.generate_single_image,
inputs=[seed2, psi2],
outputs=generated_image2)
interpolate_button.click(app.generate_interpolated_images,
inputs=[seed1, psi1, seed2, psi2, num_frames],
outputs=interpolated_images)
demo.launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|