File size: 1,438 Bytes
ce4a26c
 
 
 
 
 
 
 
1f43a97
 
 
 
 
 
 
 
 
 
 
 
 
ce4a26c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr

# GPT-J-6B API
API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B"



def poem_generate(word):
  prompt = """
  word: risk
  poem using word: And then the day came,
  when the risk
  to remain tight
  in a bud
  was more painful
  than the risk
  it took
  to blossom.
  
  word: """
  
  prompt = prompt + word + "\n" + "poem using word: "
  json_ = {"inputs": prompt,
            "parameters":
            {
            "top_p": 0.9,
          "temperature": 1.1,
          "max_new_tokens": 50,
          "return_full_text": False
          }}
  response = requests.post(API_URL, json=json_)
  output = response.json()
  poem = output[0]['generated_text'].spilt("\n\n")[0] +"."
  return poem

def poem_to_image(poem):
  poem = " ".join(poem[1:].split('\n'))
  poem = poem + " oil on canvas."
  steps, width, height, images, diversity = '50','256','256','1',15
  img = gr.Interface.load("spaces/multimodalart/latentdiffusion")(poem, steps, width, height, images, diversity)[0]
  return img

demo = gr.Blocks()

with demo:
  input_word = gr.Textbox(placeholder="Enter a word here to create a Poem on..")
  poem_txt = gr.Textbox(lines=7)
  output_image = gr.Image(type="filepath")

  b1 = gr.Button("Generate Poem")
  b2 = gr.Button("Generate Image")

  b1.click(poem_generate, input_word, poem_txt)
  b2.click(poem_to_image, poem_txt, output_image)

demo.launch(enable_queue=True, debug=True)