File size: 1,438 Bytes
ce4a26c 1f43a97 ce4a26c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
# GPT-J-6B API
API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B"
def poem_generate(word):
prompt = """
word: risk
poem using word: And then the day came,
when the risk
to remain tight
in a bud
was more painful
than the risk
it took
to blossom.
word: """
prompt = prompt + word + "\n" + "poem using word: "
json_ = {"inputs": prompt,
"parameters":
{
"top_p": 0.9,
"temperature": 1.1,
"max_new_tokens": 50,
"return_full_text": False
}}
response = requests.post(API_URL, json=json_)
output = response.json()
poem = output[0]['generated_text'].spilt("\n\n")[0] +"."
return poem
def poem_to_image(poem):
poem = " ".join(poem[1:].split('\n'))
poem = poem + " oil on canvas."
steps, width, height, images, diversity = '50','256','256','1',15
img = gr.Interface.load("spaces/multimodalart/latentdiffusion")(poem, steps, width, height, images, diversity)[0]
return img
demo = gr.Blocks()
with demo:
input_word = gr.Textbox(placeholder="Enter a word here to create a Poem on..")
poem_txt = gr.Textbox(lines=7)
output_image = gr.Image(type="filepath")
b1 = gr.Button("Generate Poem")
b2 = gr.Button("Generate Image")
b1.click(poem_generate, input_word, poem_txt)
b2.click(poem_to_image, poem_txt, output_image)
demo.launch(enable_queue=True, debug=True) |