Spaces:
Runtime error
Runtime error
import os, subprocess | |
import gradio as gr | |
import shutil, time, torch, gc | |
from mega import Mega | |
from datetime import datetime | |
import pandas as pd | |
import os, sys, subprocess, numpy as np | |
from pydub import AudioSegment | |
try: | |
from whisperspeech.pipeline import Pipeline as TTS | |
whisperspeak_on = True | |
except: | |
whisperspeak_on = False | |
# Class to handle caching model urls from a spreadsheet | |
class CachedModels: | |
def __init__(self): | |
csv_url = "https://docs.google.com/spreadsheets/d/1tAUaQrEHYgRsm1Lvrnj14HFHDwJWl0Bd9x0QePewNco/export?format=csv&gid=1977693859" | |
if os.path.exists("spreadsheet.csv"): | |
self.cached_data = pd.read_csv("spreadsheet.csv") | |
else: | |
self.cached_data = pd.read_csv(csv_url) | |
self.cached_data.to_csv("spreadsheet.csv", index=False) | |
# Cache model urls | |
self.models = {} | |
for _, row in self.cached_data.iterrows(): | |
filename = row['Filename'] | |
url = None | |
for value in row.values: | |
if isinstance(value, str) and "huggingface" in value: | |
url = value | |
break | |
if url: | |
self.models[filename] = url | |
# Get cached model urls | |
def get_models(self): | |
return self.models | |
def show(path,ext,on_error=None): | |
try: | |
return list(filter(lambda x: x.endswith(ext), os.listdir(path))) | |
except: | |
return on_error | |
def run_subprocess(command): | |
try: | |
subprocess.run(command, check=True) | |
return True, None | |
except Exception as e: | |
return False, e | |
def download_from_url(url=None, model=None): | |
if not url: | |
try: | |
url = model[f'{model}'] | |
except: | |
gr.Warning("Failed") | |
return '' | |
if model == '': | |
try: | |
model = url.split('/')[-1].split('?')[0] | |
except: | |
gr.Warning('Please name the model') | |
return | |
model = model.replace('.pth', '').replace('.index', '').replace('.zip', '') | |
url = url.replace('/blob/main/', '/resolve/main/').strip() | |
for directory in ["downloads", "unzips","zip"]: | |
#shutil.rmtree(directory, ignore_errors=True) | |
os.makedirs(directory, exist_ok=True) | |
try: | |
if url.endswith('.pth'): | |
subprocess.run(["wget", url, "-O", f'assets/weights/{model}.pth']) | |
elif url.endswith('.index'): | |
os.makedirs(f'logs/{model}', exist_ok=True) | |
subprocess.run(["wget", url, "-O", f'logs/{model}/added_{model}.index']) | |
elif url.endswith('.zip'): | |
subprocess.run(["wget", url, "-O", f'downloads/{model}.zip']) | |
else: | |
if "drive.google.com" in url: | |
url = url.split('/')[0] | |
subprocess.run(["gdown", url, "--fuzzy", "-O", f'downloads/{model}']) | |
elif "mega.nz" in url: | |
Mega().download_url(url, 'downloads') | |
else: | |
subprocess.run(["wget", url, "-O", f'downloads/{model}']) | |
downloaded_file = next((f for f in os.listdir("downloads")), None) | |
if downloaded_file: | |
if downloaded_file.endswith(".zip"): | |
shutil.unpack_archive(f'downloads/{downloaded_file}', "unzips", 'zip') | |
for root, _, files in os.walk('unzips'): | |
for file in files: | |
file_path = os.path.join(root, file) | |
if file.endswith(".index"): | |
os.makedirs(f'logs/{model}', exist_ok=True) | |
shutil.copy2(file_path, f'logs/{model}') | |
elif file.endswith(".pth") and "G_" not in file and "D_" not in file: | |
shutil.copy(file_path, f'assets/weights/{model}.pth') | |
elif downloaded_file.endswith(".pth"): | |
shutil.copy(f'downloads/{downloaded_file}', f'assets/weights/{model}.pth') | |
elif downloaded_file.endswith(".index"): | |
os.makedirs(f'logs/{model}', exist_ok=True) | |
shutil.copy(f'downloads/{downloaded_file}', f'logs/{model}/added_{model}.index') | |
else: | |
gr.Warning("Failed to download file") | |
return 'Failed' | |
gr.Info("Done") | |
except Exception as e: | |
gr.Warning(f"There's been an error: {str(e)}") | |
finally: | |
shutil.rmtree("downloads", ignore_errors=True) | |
shutil.rmtree("unzips", ignore_errors=True) | |
shutil.rmtree("zip", ignore_errors=True) | |
return 'Done' | |
def speak(audio, text): | |
print(f"({audio}, {text})") | |
current_dir = os.getcwd() | |
os.chdir('./gpt_sovits_demo') | |
process = subprocess.Popen([ | |
"python", "./zero.py", | |
"--input_file", audio, | |
"--audio_lang", "English", | |
"--text", text, | |
"--text_lang", "English" | |
], stdout=subprocess.PIPE, text=True) | |
for line in process.stdout: | |
line = line.strip() | |
if "All keys matched successfully" in line: | |
continue | |
if line.startswith("(") and line.endswith(")"): | |
path, finished = line[1:-1].split(", ") | |
if finished: | |
os.chdir(current_dir) | |
return path | |
os.chdir(current_dir) | |
return None | |
def whisperspeak(text, tts_lang, cps=10.5): | |
if whisperspeak_on is None: return None | |
if not "tts_pipe" in locals(): tts_pipe = TTS(t2s_ref='whisperspeech/whisperspeech:t2s-v1.95-small-8lang.model', s2a_ref='whisperspeech/whisperspeech:s2a-v1.95-medium-7lang.model') | |
from fastprogress.fastprogress import master_bar, progress_bar | |
master_bar.update = lambda *args, **kwargs: None | |
progress_bar.update = lambda *args, **kwargs: None | |
output = f"audios/tts_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav" | |
tts_pipe.generate_to_file(output, text, cps=cps, lang=tts_lang) | |
return os.path.abspath(output) | |
def stereo_process(audio1,audio2,choice): | |
audio = audio1 if choice == "Input" else audio2 | |
print(audio) | |
sample_rate, audio_array = audio | |
if len(audio_array.shape) == 1: | |
audio_bytes = audio_array.tobytes() | |
segment = AudioSegment( | |
data=audio_bytes, | |
sample_width=audio_array.dtype.itemsize, # 2 bytes for int16 | |
frame_rate=sample_rate, # Use the sample rate from your tuple | |
channels=1 # Adjust if your audio has more channels | |
) | |
samples = np.array(segment.get_array_of_samples()) | |
delay_samples = int(segment.frame_rate * (0.6 / 1000.0)) | |
left_channel = np.zeros_like(samples) | |
right_channel = samples | |
left_channel[delay_samples:] = samples[:-delay_samples] | |
stereo_samples = np.column_stack((left_channel, right_channel)) | |
return (sample_rate, stereo_samples.astype(np.int16)) | |
else: | |
return audio | |
def sr_process(audio1, audio2, choice): | |
torch.cuda.empty_cache() | |
gc.collect() | |
if "tts_pipe" in locals(): del tts_pipe | |
audio = audio1 if choice == "Input" else audio2 | |
sample_rate, audio_array = audio | |
audio_segment = AudioSegment( | |
audio_array.tobytes(), | |
frame_rate=sample_rate, | |
sample_width=audio_array.dtype.itemsize, | |
channels=1 if len(audio_array.shape) == 1 else 2 | |
) | |
temp_file = os.path.join('TEMP', f'{choice}_{datetime.now().strftime("%Y%m%d_%H%M%S")}.wav') | |
audio_segment.export(temp_file, format="wav") | |
output_folder = "SR" | |
model_name = "speech" | |
suffix = "_ldm" | |
guidance_scale = 2.7 | |
ddim_steps = 50 | |
venv_dir = "audiosr" | |
def split_audio(input_file, output_folder, chunk_duration=5.12): | |
os.makedirs(output_folder, exist_ok=True) | |
ffmpeg_command = f"ffmpeg -i {input_file} -f segment -segment_time {chunk_duration} -c:a pcm_s16le {output_folder}/out%03d.wav" | |
subprocess.run(ffmpeg_command, shell=True, check=True) | |
def create_file_list(output_folder): | |
file_list = os.path.join(output_folder, "file_list.txt") | |
with open(file_list, "w") as f: | |
for filename in sorted(os.listdir(output_folder)): | |
if filename.endswith(".wav"): | |
f.write(os.path.join(output_folder, filename) + "\n") | |
return file_list | |
def run_audiosr(file_list, model_name, suffix, guidance_scale, ddim_steps, output_folder, venv_dir): | |
command = f"{venv_dir}/bin/python -m audiosr --input_file_list {file_list} --model_name {model_name} --suffix {suffix} --guidance_scale {guidance_scale} --ddim_steps {ddim_steps} --save_path {output_folder}" | |
try: | |
subprocess.run(command, shell=True, check=True, stderr=subprocess.PIPE) | |
except subprocess.CalledProcessError as e: | |
print(f"Error running audiosr: {e.stderr.decode()}") | |
split_audio(temp_file, output_folder) | |
file_list = create_file_list(output_folder) | |
run_audiosr(file_list, model_name, suffix, guidance_scale, ddim_steps, output_folder, venv_dir) | |
output_file = None | |
time.sleep(1) | |
processed_chunks = [] | |
for root, dirs, files in os.walk(output_folder): | |
for file in sorted(files): | |
if file.startswith("out") and file.endswith(f"{suffix}.wav"): | |
chunk_file = os.path.join(root, file) | |
processed_chunks.append(AudioSegment.from_wav(chunk_file)) | |
if processed_chunks: | |
merged_audio = sum(processed_chunks) | |
output_file = os.path.join(output_folder, f"{choice}_merged{suffix}.wav") | |
merged_audio.export(output_file, format="wav") | |
display_file = AudioSegment.from_file(output_file) | |
sample_rate = display_file.frame_rate | |
audio_array = np.array(display_file.get_array_of_samples()) | |
return (sample_rate, audio_array) | |
else: | |
print(f"Error: Could not find any processed audio chunks in {output_folder}") | |
return None | |