Spaces:
Runtime error
Runtime error
#api for 240604 release version by Xiaokai | |
import os | |
import sys | |
import json | |
import re | |
import time | |
import librosa | |
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
import torchaudio.transforms as tat | |
import sounddevice as sd | |
from dotenv import load_dotenv | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
import threading | |
import uvicorn | |
import logging | |
from multiprocessing import Queue, Process, cpu_count, freeze_support | |
# Initialize the logger | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Define FastAPI app | |
app = FastAPI() | |
class GUIConfig: | |
def __init__(self) -> None: | |
self.pth_path: str = "" | |
self.index_path: str = "" | |
self.pitch: int = 0 | |
self.formant: float = 0.0 | |
self.sr_type: str = "sr_model" | |
self.block_time: float = 0.25 # s | |
self.threhold: int = -60 | |
self.crossfade_time: float = 0.05 | |
self.extra_time: float = 2.5 | |
self.I_noise_reduce: bool = False | |
self.O_noise_reduce: bool = False | |
self.use_pv: bool = False | |
self.rms_mix_rate: float = 0.0 | |
self.index_rate: float = 0.0 | |
self.n_cpu: int = 4 | |
self.f0method: str = "fcpe" | |
self.sg_input_device: str = "" | |
self.sg_output_device: str = "" | |
class ConfigData(BaseModel): | |
pth_path: str | |
index_path: str | |
sg_input_device: str | |
sg_output_device: str | |
threhold: int = -60 | |
pitch: int = 0 | |
formant: float = 0.0 | |
index_rate: float = 0.3 | |
rms_mix_rate: float = 0.0 | |
block_time: float = 0.25 | |
crossfade_length: float = 0.05 | |
extra_time: float = 2.5 | |
n_cpu: int = 4 | |
I_noise_reduce: bool = False | |
O_noise_reduce: bool = False | |
use_pv: bool = False | |
f0method: str = "fcpe" | |
class Harvest(Process): | |
def __init__(self, inp_q, opt_q): | |
super(Harvest, self).__init__() | |
self.inp_q = inp_q | |
self.opt_q = opt_q | |
def run(self): | |
import numpy as np | |
import pyworld | |
while True: | |
idx, x, res_f0, n_cpu, ts = self.inp_q.get() | |
f0, t = pyworld.harvest( | |
x.astype(np.double), | |
fs=16000, | |
f0_ceil=1100, | |
f0_floor=50, | |
frame_period=10, | |
) | |
res_f0[idx] = f0 | |
if len(res_f0.keys()) >= n_cpu: | |
self.opt_q.put(ts) | |
class AudioAPI: | |
def __init__(self) -> None: | |
self.gui_config = GUIConfig() | |
self.config = None # Initialize Config object as None | |
self.flag_vc = False | |
self.function = "vc" | |
self.delay_time = 0 | |
self.rvc = None # Initialize RVC object as None | |
self.inp_q = None | |
self.opt_q = None | |
self.n_cpu = min(cpu_count(), 8) | |
def initialize_queues(self): | |
self.inp_q = Queue() | |
self.opt_q = Queue() | |
for _ in range(self.n_cpu): | |
p = Harvest(self.inp_q, self.opt_q) | |
p.daemon = True | |
p.start() | |
def load(self): | |
input_devices, output_devices, _, _ = self.get_devices() | |
try: | |
with open("configs/config.json", "r", encoding='utf-8') as j: | |
data = json.load(j) | |
if data["sg_input_device"] not in input_devices: | |
data["sg_input_device"] = input_devices[sd.default.device[0]] | |
if data["sg_output_device"] not in output_devices: | |
data["sg_output_device"] = output_devices[sd.default.device[1]] | |
except Exception as e: | |
logger.error(f"Failed to load configuration: {e}") | |
with open("configs/config.json", "w", encoding='utf-8') as j: | |
data = { | |
"pth_path": "", | |
"index_path": "", | |
"sg_input_device": input_devices[sd.default.device[0]], | |
"sg_output_device": output_devices[sd.default.device[1]], | |
"threhold": -60, | |
"pitch": 0, | |
"formant": 0.0, | |
"index_rate": 0, | |
"rms_mix_rate": 0, | |
"block_time": 0.25, | |
"crossfade_length": 0.05, | |
"extra_time": 2.5, | |
"n_cpu": 4, | |
"f0method": "fcpe", | |
"use_jit": False, | |
"use_pv": False, | |
} | |
json.dump(data, j, ensure_ascii=False) | |
return data | |
def set_values(self, values): | |
logger.info(f"Setting values: {values}") | |
if not values.pth_path.strip(): | |
raise HTTPException(status_code=400, detail="Please select a .pth file") | |
if not values.index_path.strip(): | |
raise HTTPException(status_code=400, detail="Please select an index file") | |
self.set_devices(values.sg_input_device, values.sg_output_device) | |
self.config.use_jit = False | |
self.gui_config.pth_path = values.pth_path | |
self.gui_config.index_path = values.index_path | |
self.gui_config.threhold = values.threhold | |
self.gui_config.pitch = values.pitch | |
self.gui_config.formant = values.formant | |
self.gui_config.block_time = values.block_time | |
self.gui_config.crossfade_time = values.crossfade_length | |
self.gui_config.extra_time = values.extra_time | |
self.gui_config.I_noise_reduce = values.I_noise_reduce | |
self.gui_config.O_noise_reduce = values.O_noise_reduce | |
self.gui_config.rms_mix_rate = values.rms_mix_rate | |
self.gui_config.index_rate = values.index_rate | |
self.gui_config.n_cpu = values.n_cpu | |
self.gui_config.use_pv = values.use_pv | |
self.gui_config.f0method = values.f0method | |
return True | |
def start_vc(self): | |
torch.cuda.empty_cache() | |
self.flag_vc = True | |
self.rvc = rvc_for_realtime.RVC( | |
self.gui_config.pitch, | |
self.gui_config.pth_path, | |
self.gui_config.index_path, | |
self.gui_config.index_rate, | |
self.gui_config.n_cpu, | |
self.inp_q, | |
self.opt_q, | |
self.config, | |
self.rvc if self.rvc else None, | |
) | |
self.gui_config.samplerate = ( | |
self.rvc.tgt_sr | |
if self.gui_config.sr_type == "sr_model" | |
else self.get_device_samplerate() | |
) | |
self.zc = self.gui_config.samplerate // 100 | |
self.block_frame = ( | |
int( | |
np.round( | |
self.gui_config.block_time | |
* self.gui_config.samplerate | |
/ self.zc | |
) | |
) | |
* self.zc | |
) | |
self.block_frame_16k = 160 * self.block_frame // self.zc | |
self.crossfade_frame = ( | |
int( | |
np.round( | |
self.gui_config.crossfade_time | |
* self.gui_config.samplerate | |
/ self.zc | |
) | |
) | |
* self.zc | |
) | |
self.sola_buffer_frame = min(self.crossfade_frame, 4 * self.zc) | |
self.sola_search_frame = self.zc | |
self.extra_frame = ( | |
int( | |
np.round( | |
self.gui_config.extra_time | |
* self.gui_config.samplerate | |
/ self.zc | |
) | |
) | |
* self.zc | |
) | |
self.input_wav = torch.zeros( | |
self.extra_frame | |
+ self.crossfade_frame | |
+ self.sola_search_frame | |
+ self.block_frame, | |
device=self.config.device, | |
dtype=torch.float32, | |
) | |
self.input_wav_denoise = self.input_wav.clone() | |
self.input_wav_res = torch.zeros( | |
160 * self.input_wav.shape[0] // self.zc, | |
device=self.config.device, | |
dtype=torch.float32, | |
) | |
self.rms_buffer = np.zeros(4 * self.zc, dtype="float32") | |
self.sola_buffer = torch.zeros( | |
self.sola_buffer_frame, device=self.config.device, dtype=torch.float32 | |
) | |
self.nr_buffer = self.sola_buffer.clone() | |
self.output_buffer = self.input_wav.clone() | |
self.skip_head = self.extra_frame // self.zc | |
self.return_length = ( | |
self.block_frame + self.sola_buffer_frame + self.sola_search_frame | |
) // self.zc | |
self.fade_in_window = ( | |
torch.sin( | |
0.5 | |
* np.pi | |
* torch.linspace( | |
0.0, | |
1.0, | |
steps=self.sola_buffer_frame, | |
device=self.config.device, | |
dtype=torch.float32, | |
) | |
) | |
** 2 | |
) | |
self.fade_out_window = 1 - self.fade_in_window | |
self.resampler = tat.Resample( | |
orig_freq=self.gui_config.samplerate, | |
new_freq=16000, | |
dtype=torch.float32, | |
).to(self.config.device) | |
if self.rvc.tgt_sr != self.gui_config.samplerate: | |
self.resampler2 = tat.Resample( | |
orig_freq=self.rvc.tgt_sr, | |
new_freq=self.gui_config.samplerate, | |
dtype=torch.float32, | |
).to(self.config.device) | |
else: | |
self.resampler2 = None | |
self.tg = TorchGate( | |
sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9 | |
).to(self.config.device) | |
thread_vc = threading.Thread(target=self.soundinput) | |
thread_vc.start() | |
def soundinput(self): | |
channels = 1 if sys.platform == "darwin" else 2 | |
with sd.Stream( | |
channels=channels, | |
callback=self.audio_callback, | |
blocksize=self.block_frame, | |
samplerate=self.gui_config.samplerate, | |
dtype="float32", | |
) as stream: | |
global stream_latency | |
stream_latency = stream.latency[-1] | |
while self.flag_vc: | |
time.sleep(self.gui_config.block_time) | |
logger.info("Audio block passed.") | |
logger.info("Ending VC") | |
def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status): | |
start_time = time.perf_counter() | |
indata = librosa.to_mono(indata.T) | |
if self.gui_config.threhold > -60: | |
indata = np.append(self.rms_buffer, indata) | |
rms = librosa.feature.rms(y=indata, frame_length=4 * self.zc, hop_length=self.zc)[:, 2:] | |
self.rms_buffer[:] = indata[-4 * self.zc :] | |
indata = indata[2 * self.zc - self.zc // 2 :] | |
db_threhold = ( | |
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold | |
) | |
for i in range(db_threhold.shape[0]): | |
if db_threhold[i]: | |
indata[i * self.zc : (i + 1) * self.zc] = 0 | |
indata = indata[self.zc // 2 :] | |
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone() | |
self.input_wav[-indata.shape[0] :] = torch.from_numpy(indata).to(self.config.device) | |
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone() | |
# input noise reduction and resampling | |
if self.gui_config.I_noise_reduce: | |
self.input_wav_denoise[: -self.block_frame] = self.input_wav_denoise[self.block_frame :].clone() | |
input_wav = self.input_wav[-self.sola_buffer_frame - self.block_frame :] | |
input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0)).squeeze(0) | |
input_wav[: self.sola_buffer_frame] *= self.fade_in_window | |
input_wav[: self.sola_buffer_frame] += self.nr_buffer * self.fade_out_window | |
self.input_wav_denoise[-self.block_frame :] = input_wav[: self.block_frame] | |
self.nr_buffer[:] = input_wav[self.block_frame :] | |
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler( | |
self.input_wav_denoise[-self.block_frame - 2 * self.zc :] | |
)[160:] | |
else: | |
self.input_wav_res[-160 * (indata.shape[0] // self.zc + 1) :] = ( | |
self.resampler(self.input_wav[-indata.shape[0] - 2 * self.zc :])[160:] | |
) | |
# infer | |
if self.function == "vc": | |
infer_wav = self.rvc.infer( | |
self.input_wav_res, | |
self.block_frame_16k, | |
self.skip_head, | |
self.return_length, | |
self.gui_config.f0method, | |
) | |
if self.resampler2 is not None: | |
infer_wav = self.resampler2(infer_wav) | |
elif self.gui_config.I_noise_reduce: | |
infer_wav = self.input_wav_denoise[self.extra_frame :].clone() | |
else: | |
infer_wav = self.input_wav[self.extra_frame :].clone() | |
# output noise reduction | |
if self.gui_config.O_noise_reduce and self.function == "vc": | |
self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone() | |
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :] | |
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0) | |
# volume envelop mixing | |
if self.gui_config.rms_mix_rate < 1 and self.function == "vc": | |
if self.gui_config.I_noise_reduce: | |
input_wav = self.input_wav_denoise[self.extra_frame :] | |
else: | |
input_wav = self.input_wav[self.extra_frame :] | |
rms1 = librosa.feature.rms( | |
y=input_wav[: infer_wav.shape[0]].cpu().numpy(), | |
frame_length=4 * self.zc, | |
hop_length=self.zc, | |
) | |
rms1 = torch.from_numpy(rms1).to(self.config.device) | |
rms1 = F.interpolate( | |
rms1.unsqueeze(0), | |
size=infer_wav.shape[0] + 1, | |
mode="linear", | |
align_corners=True, | |
)[0, 0, :-1] | |
rms2 = librosa.feature.rms( | |
y=infer_wav[:].cpu().numpy(), | |
frame_length=4 * self.zc, | |
hop_length=self.zc, | |
) | |
rms2 = torch.from_numpy(rms2).to(self.config.device) | |
rms2 = F.interpolate( | |
rms2.unsqueeze(0), | |
size=infer_wav.shape[0] + 1, | |
mode="linear", | |
align_corners=True, | |
)[0, 0, :-1] | |
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3) | |
infer_wav *= torch.pow( | |
rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate) | |
) | |
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC | |
conv_input = infer_wav[None, None, : self.sola_buffer_frame + self.sola_search_frame] | |
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :]) | |
cor_den = torch.sqrt( | |
F.conv1d( | |
conv_input**2, | |
torch.ones(1, 1, self.sola_buffer_frame, device=self.config.device), | |
) | |
+ 1e-8 | |
) | |
if sys.platform == "darwin": | |
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0]) | |
sola_offset = sola_offset.item() | |
else: | |
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) | |
logger.info(f"sola_offset = {sola_offset}") | |
infer_wav = infer_wav[sola_offset:] | |
if "privateuseone" in str(self.config.device) or not self.gui_config.use_pv: | |
infer_wav[: self.sola_buffer_frame] *= self.fade_in_window | |
infer_wav[: self.sola_buffer_frame] += self.sola_buffer * self.fade_out_window | |
else: | |
infer_wav[: self.sola_buffer_frame] = phase_vocoder( | |
self.sola_buffer, | |
infer_wav[: self.sola_buffer_frame], | |
self.fade_out_window, | |
self.fade_in_window, | |
) | |
self.sola_buffer[:] = infer_wav[ | |
self.block_frame : self.block_frame + self.sola_buffer_frame | |
] | |
if sys.platform == "darwin": | |
outdata[:] = infer_wav[: self.block_frame].cpu().numpy()[:, np.newaxis] | |
else: | |
outdata[:] = infer_wav[: self.block_frame].repeat(2, 1).t().cpu().numpy() | |
total_time = time.perf_counter() - start_time | |
logger.info(f"Infer time: {total_time:.2f}") | |
def get_devices(self, update: bool = True): | |
if update: | |
sd._terminate() | |
sd._initialize() | |
devices = sd.query_devices() | |
hostapis = sd.query_hostapis() | |
for hostapi in hostapis: | |
for device_idx in hostapi["devices"]: | |
devices[device_idx]["hostapi_name"] = hostapi["name"] | |
input_devices = [ | |
f"{d['name']} ({d['hostapi_name']})" | |
for d in devices | |
if d["max_input_channels"] > 0 | |
] | |
output_devices = [ | |
f"{d['name']} ({d['hostapi_name']})" | |
for d in devices | |
if d["max_output_channels"] > 0 | |
] | |
input_devices_indices = [ | |
d["index"] if "index" in d else d["name"] | |
for d in devices | |
if d["max_input_channels"] > 0 | |
] | |
output_devices_indices = [ | |
d["index"] if "index" in d else d["name"] | |
for d in devices | |
if d["max_output_channels"] > 0 | |
] | |
return ( | |
input_devices, | |
output_devices, | |
input_devices_indices, | |
output_devices_indices, | |
) | |
def set_devices(self, input_device, output_device): | |
( | |
input_devices, | |
output_devices, | |
input_device_indices, | |
output_device_indices, | |
) = self.get_devices() | |
logger.debug(f"Available input devices: {input_devices}") | |
logger.debug(f"Available output devices: {output_devices}") | |
logger.debug(f"Selected input device: {input_device}") | |
logger.debug(f"Selected output device: {output_device}") | |
if input_device not in input_devices: | |
logger.error(f"Input device '{input_device}' is not in the list of available devices") | |
raise HTTPException(status_code=400, detail=f"Input device '{input_device}' is not available") | |
if output_device not in output_devices: | |
logger.error(f"Output device '{output_device}' is not in the list of available devices") | |
raise HTTPException(status_code=400, detail=f"Output device '{output_device}' is not available") | |
sd.default.device[0] = input_device_indices[input_devices.index(input_device)] | |
sd.default.device[1] = output_device_indices[output_devices.index(output_device)] | |
logger.info(f"Input device set to {sd.default.device[0]}: {input_device}") | |
logger.info(f"Output device set to {sd.default.device[1]}: {output_device}") | |
audio_api = AudioAPI() | |
def get_input_devices(): | |
try: | |
input_devices, _, _, _ = audio_api.get_devices() | |
return input_devices | |
except Exception as e: | |
logger.error(f"Failed to get input devices: {e}") | |
raise HTTPException(status_code=500, detail="Failed to get input devices") | |
def get_output_devices(): | |
try: | |
_, output_devices, _, _ = audio_api.get_devices() | |
return output_devices | |
except Exception as e: | |
logger.error(f"Failed to get output devices: {e}") | |
raise HTTPException(status_code=500, detail="Failed to get output devices") | |
def configure_audio(config_data: ConfigData): | |
try: | |
logger.info(f"Configuring audio with data: {config_data}") | |
if audio_api.set_values(config_data): | |
settings = config_data.dict() | |
settings["use_jit"] = False | |
with open("configs/config.json", "w", encoding='utf-8') as j: | |
json.dump(settings, j, ensure_ascii=False) | |
logger.info("Configuration set successfully") | |
return {"message": "Configuration set successfully"} | |
except HTTPException as e: | |
logger.error(f"Configuration error: {e.detail}") | |
raise | |
except Exception as e: | |
logger.error(f"Configuration failed: {e}") | |
raise HTTPException(status_code=400, detail=f"Configuration failed: {e}") | |
def start_conversion(): | |
try: | |
if not audio_api.flag_vc: | |
audio_api.start_vc() | |
return {"message": "Audio conversion started"} | |
else: | |
logger.warning("Audio conversion already running") | |
raise HTTPException(status_code=400, detail="Audio conversion already running") | |
except HTTPException as e: | |
logger.error(f"Start conversion error: {e.detail}") | |
raise | |
except Exception as e: | |
logger.error(f"Failed to start conversion: {e}") | |
raise HTTPException(status_code=500, detail="Failed to start conversion: {e}") | |
def stop_conversion(): | |
try: | |
if audio_api.flag_vc: | |
audio_api.flag_vc = False | |
global stream_latency | |
stream_latency = -1 | |
return {"message": "Audio conversion stopped"} | |
else: | |
logger.warning("Audio conversion not running") | |
raise HTTPException(status_code=400, detail="Audio conversion not running") | |
except HTTPException as e: | |
logger.error(f"Stop conversion error: {e.detail}") | |
raise | |
except Exception as e: | |
logger.error(f"Failed to stop conversion: {e}") | |
raise HTTPException(status_code=500, detail="Failed to stop conversion: {e}") | |
if __name__ == "__main__": | |
if sys.platform == "win32": | |
freeze_support() | |
load_dotenv() | |
os.environ["OMP_NUM_THREADS"] = "4" | |
if sys.platform == "darwin": | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
from tools.torchgate import TorchGate | |
import tools.rvc_for_realtime as rvc_for_realtime | |
from configs.config import Config | |
audio_api.config = Config() | |
audio_api.initialize_queues() | |
uvicorn.run(app, host="0.0.0.0", port=6242) | |