import os import shutil from flask import Flask, render_template, request, jsonify from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings from llama_index.llms.huggingface import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding from huggingface_hub import InferenceClient from transformers import AutoTokenizer, AutoModel # Ensure HF_TOKEN is set HF_TOKEN = os.getenv("HF_TOKEN") if not HF_TOKEN: raise ValueError("HF_TOKEN environment variable not set.") repo_id = "meta-llama/Meta-Llama-3-8B-Instruct" llm_client = InferenceClient( model=repo_id, token=HF_TOKEN, ) # Configure Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name=repo_id, tokenizer_name=repo_id, context_window=3000, token=HF_TOKEN, max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) # Settings.embed_model = HuggingFaceEmbedding( # model_name="BAAI/bge-small-en-v1.5" # ) # Replace the embedding model with XLM-R Settings.embed_model = HuggingFaceEmbedding( model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support ) # Configure tokenizer and model if required tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") model = AutoModel.from_pretrained("xlm-roberta-base") PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Ensure directories exist os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) chat_history = [] current_chat_history = [] def data_ingestion_from_directory(): # Clear previous data by removing the persist directory if os.path.exists(PERSIST_DIR): shutil.rmtree(PERSIST_DIR) # Remove the persist directory and all its contents # Recreate the persist directory after removal os.makedirs(PERSIST_DIR, exist_ok=True) # Load new documents from the directory new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() # Create a new index with the new documents index = VectorStoreIndex.from_documents(new_documents) # Persist the new index index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): chat_text_qa_msgs = [ ( "user", """You are the Taj Hotel chatbot, Taj Hotel Helper. Respond concisely in the user's preferred language (English, Telugu, or Hindi). Your task is to provide accurate information about the hotel’s services, amenities, and policies. **Instructions:** - **Context:** {context_str} - **User's Question:** {query_str} - **Response Guidelines:** - Limit your response to 10-15 words for clarity. - Use polite and professional language that reflects the luxury brand of the Taj Hotel. - If unsure, acknowledge it politely and guide the user to find more information. **Response:** [Your concise response here] """.format(context_str=context_str, query_str=query) ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) context_str = "" # Build context from current chat history for past_query, response in reversed(current_chat_history): if past_query.strip(): context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) print(f"Querying: {query}") answer = query_engine.query(query) # Extracting the response if hasattr(answer, 'response'): response = answer.response elif isinstance(answer, dict) and 'response' in answer: response = answer['response'] else: response = "I'm sorry, I couldn't find an answer to that." # Append to chat history current_chat_history.append((query, response)) return response app = Flask(__name__) # Data ingestion data_ingestion_from_directory() # Generate Response def generate_response(query): try: # Call the handle_query function to get the response bot_response = handle_query(query) return bot_response except Exception as e: return f"Error fetching the response: {str(e)}" # Route for the homepage @app.route('/') def index(): return render_template('index.html') # Route to handle chatbot messages @app.route('/chat', methods=['POST']) def chat(): try: user_message = request.json.get("message") if not user_message: return jsonify({"response": "Please say something!"}) bot_response = generate_response(user_message) return jsonify({"response": bot_response}) except Exception as e: return jsonify({"response": f"An error occurred: {str(e)}"}) if __name__ == '__main__': app.run(debug=True)