Spaces:
Running
Running
import os | |
import shutil | |
from flask import Flask, render_template, request, jsonify | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from huggingface_hub import InferenceClient | |
# Initialize environment and settings | |
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
llm_client = InferenceClient( | |
model=repo_id, | |
token=os.getenv("HF_TOKEN"), | |
) | |
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN") | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
chat_history = [] | |
current_chat_history = [] | |
def data_ingestion_from_directory(): | |
# Clear previous data by removing the persist directory | |
if os.path.exists(PERSIST_DIR): | |
shutil.rmtree(PERSIST_DIR) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
if not new_documents: | |
print("No documents were found or loaded.") | |
return | |
index = VectorStoreIndex.from_documents(new_documents) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
print("Persist data cleared and updated with new data.") | |
def handle_query(query): | |
chat_text_qa_msgs = [ | |
("user", """ | |
You are the Taj Hotel chatbot and your name is Taj Hotel Helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the given Taj hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user. | |
{context_str} | |
Question: | |
{query_str} | |
""") | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
context_str = "" | |
for past_query, response in reversed(current_chat_history): | |
if past_query.strip(): | |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
print(f"User query: {query}") | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "Sorry, I couldn't find an answer." | |
current_chat_history.append((query, response)) | |
return response | |
app = Flask(__name__) | |
def generate_response(query): | |
try: | |
bot_response = handle_query(query) | |
return bot_response | |
except Exception as e: | |
return f"Error fetching the response: {str(e)}" | |
def index(): | |
return render_template('index.html') | |
def chat(): | |
try: | |
user_message = request.json.get("message") | |
if not user_message: | |
return jsonify({"response": "Please say something!"}) | |
bot_response = generate_response(user_message) | |
return jsonify({"response": bot_response}) | |
except Exception as e: | |
return jsonify({"response": f"An error occurred: {str(e)}"}) | |
if __name__ == '__main__': | |
app.run(debug=True) | |