Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,8 +10,9 @@ from transformers import (
|
|
10 |
CLIPTextModel,
|
11 |
CLIPTextModelWithProjection,
|
12 |
)
|
13 |
-
from diffusers import DDPMScheduler,
|
14 |
from typing import List
|
|
|
15 |
import torch
|
16 |
import os
|
17 |
from transformers import AutoTokenizer
|
@@ -21,7 +22,7 @@ from torchvision import transforms
|
|
21 |
import apply_net
|
22 |
from preprocess.humanparsing.run_parsing import Parsing
|
23 |
from preprocess.openpose.run_openpose import OpenPose
|
24 |
-
from detectron2.data.detection_utils import convert_PIL_to_numpy,
|
25 |
from torchvision.transforms.functional import to_pil_image
|
26 |
|
27 |
|
@@ -32,214 +33,280 @@ def pil_to_binary_mask(pil_image, threshold=0):
|
|
32 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
33 |
for i in range(binary_mask.shape[0]):
|
34 |
for j in range(binary_mask.shape[1]):
|
35 |
-
if binary_mask[i,
|
36 |
-
mask[i,
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
def add_watermark(main_image, logo_path='logo.png', position='bottom-left', size_percentage=10):
|
41 |
-
logo = Image.open(logo_path).convert('RGBA')
|
42 |
-
main_width, main_height = main_image.size
|
43 |
-
logo_width = int(main_width * size_percentage / 100)
|
44 |
-
logo_height = int(logo.size[1] * (logo_width / logo.size[0]))
|
45 |
-
logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS)
|
46 |
-
|
47 |
-
if main_image.mode != 'RGBA':
|
48 |
-
main_image = main_image.convert('RGBA')
|
49 |
-
|
50 |
-
watermarked = Image.new('RGBA', main_image.size, (0, 0, 0, 0))
|
51 |
-
watermarked.paste(main_image, (0, 0))
|
52 |
-
|
53 |
-
if position == 'bottom-left':
|
54 |
-
pos = (10, main_height - logo_height - 10)
|
55 |
-
elif position == 'bottom-right':
|
56 |
-
pos = (main_width - logo_width - 10, main_height - logo_height - 10)
|
57 |
-
elif position == 'top-right':
|
58 |
-
pos = (main_width - logo_width - 10, 10)
|
59 |
-
elif position == 'top-left':
|
60 |
-
pos = (10, 10)
|
61 |
-
|
62 |
-
watermarked.paste(logo, pos, logo)
|
63 |
-
return watermarked.convert('RGB')
|
64 |
|
65 |
|
66 |
base_path = 'yisol/IDM-VTON'
|
67 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
68 |
|
69 |
-
unet = UNet2DConditionModel.from_pretrained(
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
parsing_model = Parsing(0)
|
80 |
openpose_model = OpenPose(0)
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
pipe = TryonPipeline.from_pretrained(
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
)
|
103 |
pipe.unet_encoder = UNet_Encoder
|
104 |
|
105 |
@spaces.GPU
|
106 |
-
def start_tryon(dict,
|
107 |
device = "cuda"
|
|
|
108 |
openpose_model.preprocessor.body_estimation.model.to(device)
|
109 |
pipe.to(device)
|
110 |
pipe.unet_encoder.to(device)
|
111 |
|
112 |
-
garm_img
|
113 |
-
human_img_orig = dict["background"].convert("RGB")
|
114 |
-
|
115 |
if is_checked_crop:
|
116 |
width, height = human_img_orig.size
|
117 |
target_width = int(min(width, height * (3 / 4)))
|
118 |
target_height = int(min(height, width * (4 / 3)))
|
119 |
-
left = (width - target_width)
|
120 |
-
top = (height - target_height)
|
121 |
-
|
|
|
|
|
122 |
crop_size = cropped_img.size
|
123 |
-
human_img = cropped_img.resize((768,
|
124 |
else:
|
125 |
-
human_img = human_img_orig.resize((768,
|
|
|
126 |
|
127 |
if is_checked:
|
128 |
-
keypoints = openpose_model(human_img.resize((384,
|
129 |
-
model_parse, _ = parsing_model(human_img.resize((384,
|
130 |
-
mask,
|
131 |
-
mask = mask.resize((768,
|
132 |
else:
|
133 |
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
136 |
-
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
|
137 |
|
138 |
-
human_img_arg = _apply_exif_orientation(human_img.resize((384,
|
139 |
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
140 |
-
|
141 |
-
|
142 |
-
'./ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v',
|
143 |
-
'--opts', 'MODEL.DEVICE', 'cuda'))
|
144 |
-
pose_img = args.func(args, human_img_arg)
|
145 |
-
pose_img = Image.fromarray(pose_img[:, :, ::-1]).resize((768, 1024))
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
with torch.no_grad():
|
|
|
148 |
with torch.cuda.amp.autocast():
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
if is_checked_crop:
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
|
194 |
-
# --- Gradio UI setup ---
|
195 |
-
garm_list = os.listdir(os.path.join(example_path, "cloth"))
|
196 |
-
garm_list_path = [os.path.join(example_path, "cloth", g) for g in garm_list]
|
197 |
-
human_list = os.listdir(os.path.join(example_path, "human"))
|
198 |
-
human_list_path = [os.path.join(example_path, "human", h) for h in human_list]
|
199 |
-
human_ex_list = [{'background': h, 'layers': None, 'composite': None} for h in human_list_path]
|
200 |
|
201 |
image_blocks = gr.Blocks().queue()
|
202 |
with image_blocks as demo:
|
203 |
-
gr.Markdown(
|
204 |
-
|
205 |
-
<div style="text-align: center; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%); padding: 2.5rem; color: white; border-radius: 0 0 20px 20px; margin-bottom: 2rem; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
|
206 |
-
<h1 style="color: white; font-size: 2.5rem; font-weight: 600; margin-bottom: 1rem;">Deradh Virtual Try-On Experience</h1>
|
207 |
-
<div style="margin: 1rem 0;">
|
208 |
-
<a href="https://deradh.com" style="color: white; text-decoration: none; padding: 0.5rem 1rem; border: 2px solid white; border-radius: 25px; transition: all 0.3s ease;">
|
209 |
-
Visit Deradh.com
|
210 |
-
</a>
|
211 |
-
</div>
|
212 |
-
</div>
|
213 |
-
<div style="text-align: center; padding: 1rem; color: #6ed7fe; font-size: 1.2rem; font-weight: 500; margin-bottom: 2rem;">
|
214 |
-
Experience the future of fashion with our AI-powered virtual try-on technology. Every user gets 2-3 free trials per day.
|
215 |
-
</div>
|
216 |
-
""")
|
217 |
-
|
218 |
with gr.Row():
|
219 |
with gr.Column():
|
220 |
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
|
221 |
-
|
222 |
-
|
223 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
with gr.Column():
|
226 |
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
230 |
with gr.Column():
|
231 |
-
image_out = gr.Image(label="
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
image_blocks.launch()
|
|
|
10 |
CLIPTextModel,
|
11 |
CLIPTextModelWithProjection,
|
12 |
)
|
13 |
+
from diffusers import DDPMScheduler,AutoencoderKL
|
14 |
from typing import List
|
15 |
+
|
16 |
import torch
|
17 |
import os
|
18 |
from transformers import AutoTokenizer
|
|
|
22 |
import apply_net
|
23 |
from preprocess.humanparsing.run_parsing import Parsing
|
24 |
from preprocess.openpose.run_openpose import OpenPose
|
25 |
+
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
|
26 |
from torchvision.transforms.functional import to_pil_image
|
27 |
|
28 |
|
|
|
33 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
34 |
for i in range(binary_mask.shape[0]):
|
35 |
for j in range(binary_mask.shape[1]):
|
36 |
+
if binary_mask[i,j] == True :
|
37 |
+
mask[i,j] = 1
|
38 |
+
mask = (mask*255).astype(np.uint8)
|
39 |
+
output_mask = Image.fromarray(mask)
|
40 |
+
return output_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
base_path = 'yisol/IDM-VTON'
|
44 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
45 |
|
46 |
+
unet = UNet2DConditionModel.from_pretrained(
|
47 |
+
base_path,
|
48 |
+
subfolder="unet",
|
49 |
+
torch_dtype=torch.float16,
|
50 |
+
)
|
51 |
+
unet.requires_grad_(False)
|
52 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
53 |
+
base_path,
|
54 |
+
subfolder="tokenizer",
|
55 |
+
revision=None,
|
56 |
+
use_fast=False,
|
57 |
+
)
|
58 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
59 |
+
base_path,
|
60 |
+
subfolder="tokenizer_2",
|
61 |
+
revision=None,
|
62 |
+
use_fast=False,
|
63 |
+
)
|
64 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
65 |
+
|
66 |
+
text_encoder_one = CLIPTextModel.from_pretrained(
|
67 |
+
base_path,
|
68 |
+
subfolder="text_encoder",
|
69 |
+
torch_dtype=torch.float16,
|
70 |
+
)
|
71 |
+
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
72 |
+
base_path,
|
73 |
+
subfolder="text_encoder_2",
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
)
|
76 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
77 |
+
base_path,
|
78 |
+
subfolder="image_encoder",
|
79 |
+
torch_dtype=torch.float16,
|
80 |
+
)
|
81 |
+
vae = AutoencoderKL.from_pretrained(base_path,
|
82 |
+
subfolder="vae",
|
83 |
+
torch_dtype=torch.float16,
|
84 |
+
)
|
85 |
+
|
86 |
+
# "stabilityai/stable-diffusion-xl-base-1.0",
|
87 |
+
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
88 |
+
base_path,
|
89 |
+
subfolder="unet_encoder",
|
90 |
+
torch_dtype=torch.float16,
|
91 |
+
)
|
92 |
|
93 |
parsing_model = Parsing(0)
|
94 |
openpose_model = OpenPose(0)
|
95 |
|
96 |
+
UNet_Encoder.requires_grad_(False)
|
97 |
+
image_encoder.requires_grad_(False)
|
98 |
+
vae.requires_grad_(False)
|
99 |
+
unet.requires_grad_(False)
|
100 |
+
text_encoder_one.requires_grad_(False)
|
101 |
+
text_encoder_two.requires_grad_(False)
|
102 |
+
tensor_transfrom = transforms.Compose(
|
103 |
+
[
|
104 |
+
transforms.ToTensor(),
|
105 |
+
transforms.Normalize([0.5], [0.5]),
|
106 |
+
]
|
107 |
+
)
|
108 |
|
109 |
pipe = TryonPipeline.from_pretrained(
|
110 |
+
base_path,
|
111 |
+
unet=unet,
|
112 |
+
vae=vae,
|
113 |
+
feature_extractor= CLIPImageProcessor(),
|
114 |
+
text_encoder = text_encoder_one,
|
115 |
+
text_encoder_2 = text_encoder_two,
|
116 |
+
tokenizer = tokenizer_one,
|
117 |
+
tokenizer_2 = tokenizer_two,
|
118 |
+
scheduler = noise_scheduler,
|
119 |
+
image_encoder=image_encoder,
|
120 |
+
torch_dtype=torch.float16,
|
121 |
)
|
122 |
pipe.unet_encoder = UNet_Encoder
|
123 |
|
124 |
@spaces.GPU
|
125 |
+
def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
|
126 |
device = "cuda"
|
127 |
+
|
128 |
openpose_model.preprocessor.body_estimation.model.to(device)
|
129 |
pipe.to(device)
|
130 |
pipe.unet_encoder.to(device)
|
131 |
|
132 |
+
garm_img= garm_img.convert("RGB").resize((768,1024))
|
133 |
+
human_img_orig = dict["background"].convert("RGB")
|
134 |
+
|
135 |
if is_checked_crop:
|
136 |
width, height = human_img_orig.size
|
137 |
target_width = int(min(width, height * (3 / 4)))
|
138 |
target_height = int(min(height, width * (4 / 3)))
|
139 |
+
left = (width - target_width) / 2
|
140 |
+
top = (height - target_height) / 2
|
141 |
+
right = (width + target_width) / 2
|
142 |
+
bottom = (height + target_height) / 2
|
143 |
+
cropped_img = human_img_orig.crop((left, top, right, bottom))
|
144 |
crop_size = cropped_img.size
|
145 |
+
human_img = cropped_img.resize((768,1024))
|
146 |
else:
|
147 |
+
human_img = human_img_orig.resize((768,1024))
|
148 |
+
|
149 |
|
150 |
if is_checked:
|
151 |
+
keypoints = openpose_model(human_img.resize((384,512)))
|
152 |
+
model_parse, _ = parsing_model(human_img.resize((384,512)))
|
153 |
+
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
|
154 |
+
mask = mask.resize((768,1024))
|
155 |
else:
|
156 |
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
157 |
+
# mask = transforms.ToTensor()(mask)
|
158 |
+
# mask = mask.unsqueeze(0)
|
159 |
+
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
160 |
+
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
|
161 |
|
|
|
|
|
162 |
|
163 |
+
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
|
164 |
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
165 |
+
|
166 |
+
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
|
169 |
+
# verbosity = getattr(args, "verbosity", None)
|
170 |
+
pose_img = args.func(args,human_img_arg)
|
171 |
+
pose_img = pose_img[:,:,::-1]
|
172 |
+
pose_img = Image.fromarray(pose_img).resize((768,1024))
|
173 |
+
|
174 |
with torch.no_grad():
|
175 |
+
# Extract the images
|
176 |
with torch.cuda.amp.autocast():
|
177 |
+
with torch.no_grad():
|
178 |
+
prompt = "model is wearing " + garment_des
|
179 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
180 |
+
with torch.inference_mode():
|
181 |
+
(
|
182 |
+
prompt_embeds,
|
183 |
+
negative_prompt_embeds,
|
184 |
+
pooled_prompt_embeds,
|
185 |
+
negative_pooled_prompt_embeds,
|
186 |
+
) = pipe.encode_prompt(
|
187 |
+
prompt,
|
188 |
+
num_images_per_prompt=1,
|
189 |
+
do_classifier_free_guidance=True,
|
190 |
+
negative_prompt=negative_prompt,
|
191 |
+
)
|
192 |
+
|
193 |
+
prompt = "a photo of " + garment_des
|
194 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
195 |
+
if not isinstance(prompt, List):
|
196 |
+
prompt = [prompt] * 1
|
197 |
+
if not isinstance(negative_prompt, List):
|
198 |
+
negative_prompt = [negative_prompt] * 1
|
199 |
+
with torch.inference_mode():
|
200 |
+
(
|
201 |
+
prompt_embeds_c,
|
202 |
+
_,
|
203 |
+
_,
|
204 |
+
_,
|
205 |
+
) = pipe.encode_prompt(
|
206 |
+
prompt,
|
207 |
+
num_images_per_prompt=1,
|
208 |
+
do_classifier_free_guidance=False,
|
209 |
+
negative_prompt=negative_prompt,
|
210 |
+
)
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
|
215 |
+
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
|
216 |
+
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
217 |
+
images = pipe(
|
218 |
+
prompt_embeds=prompt_embeds.to(device,torch.float16),
|
219 |
+
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
|
220 |
+
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
|
221 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
|
222 |
+
num_inference_steps=denoise_steps,
|
223 |
+
generator=generator,
|
224 |
+
strength = 1.0,
|
225 |
+
pose_img = pose_img.to(device,torch.float16),
|
226 |
+
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
|
227 |
+
cloth = garm_tensor.to(device,torch.float16),
|
228 |
+
mask_image=mask,
|
229 |
+
image=human_img,
|
230 |
+
height=1024,
|
231 |
+
width=768,
|
232 |
+
ip_adapter_image = garm_img.resize((768,1024)),
|
233 |
+
guidance_scale=2.0,
|
234 |
+
)[0]
|
235 |
+
|
236 |
if is_checked_crop:
|
237 |
+
out_img = images[0].resize(crop_size)
|
238 |
+
human_img_orig.paste(out_img, (int(left), int(top)))
|
239 |
+
return human_img_orig, mask_gray
|
240 |
+
else:
|
241 |
+
return images[0], mask_gray
|
242 |
+
# return images[0], mask_gray
|
243 |
+
|
244 |
+
garm_list = os.listdir(os.path.join(example_path,"cloth"))
|
245 |
+
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
|
246 |
+
|
247 |
+
human_list = os.listdir(os.path.join(example_path,"human"))
|
248 |
+
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
|
249 |
+
|
250 |
+
human_ex_list = []
|
251 |
+
for ex_human in human_list_path:
|
252 |
+
ex_dict= {}
|
253 |
+
ex_dict['background'] = ex_human
|
254 |
+
ex_dict['layers'] = None
|
255 |
+
ex_dict['composite'] = None
|
256 |
+
human_ex_list.append(ex_dict)
|
257 |
|
258 |
+
##default human
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
image_blocks = gr.Blocks().queue()
|
262 |
with image_blocks as demo:
|
263 |
+
gr.Markdown("## IDM-VTON πππ")
|
264 |
+
gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
with gr.Row():
|
266 |
with gr.Column():
|
267 |
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
|
268 |
+
with gr.Row():
|
269 |
+
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
|
270 |
+
with gr.Row():
|
271 |
+
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
|
272 |
+
|
273 |
+
example = gr.Examples(
|
274 |
+
inputs=imgs,
|
275 |
+
examples_per_page=10,
|
276 |
+
examples=human_ex_list
|
277 |
+
)
|
278 |
|
279 |
with gr.Column():
|
280 |
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
|
281 |
+
with gr.Row(elem_id="prompt-container"):
|
282 |
+
with gr.Row():
|
283 |
+
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
|
284 |
+
example = gr.Examples(
|
285 |
+
inputs=garm_img,
|
286 |
+
examples_per_page=8,
|
287 |
+
examples=garm_list_path)
|
288 |
with gr.Column():
|
289 |
+
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
290 |
+
masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
|
291 |
+
with gr.Column():
|
292 |
+
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
293 |
+
image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
with gr.Column():
|
299 |
+
try_button = gr.Button(value="Try-on")
|
300 |
+
with gr.Accordion(label="Advanced Settings", open=False):
|
301 |
+
with gr.Row():
|
302 |
+
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
|
303 |
+
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
|
312 |
+
image_blocks.launch()
|