Spaces:
Sleeping
Sleeping
File size: 11,826 Bytes
0ab0e51 116b148 0ab0e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
import yfinance as yf
import datetime as datetime
from keras.models import load_model
from sklearn.metrics import mean_absolute_error, root_mean_squared_error
st.set_page_config(page_title="Stock Price Prediction", page_icon=":moneybag:")
prediction_start_date = last_60_days_comparison = 60
future_30_days = 30
# Initialize session state for metrics visibility
if 'show_metrics' not in st.session_state:
st.session_state.show_metrics = False
# Page title
st.title("Stock Price Visualization and Prediction :moneybag:")
# Create a form for user inputs
with st.form("user_inputs"):
# Form fields for collecting user inputs
start_date = st.date_input("Select a start date", datetime.date.today())
end_date = st.date_input("Select a end date", datetime.date.today())
ticker_symbol = st.text_input("Enter the stock ticker symbol (e.g., AAPL)", "AAPL")
# Form submit button
submit_button = st.form_submit_button("Generate Plot")
# Check if the user has submitted the inputs
if submit_button:
data_load_state = st.text("Loading data...")
# Convert start_date to the desired format
start_date = start_date.strftime("%Y-%m-%d")
end_date = datetime.date.today().strftime("%Y-%m-%d") or '2024-01-01'
df = yf.download(ticker_symbol, start_date, end_date)
st.write(df.describe())
data_load_state.text("Data loaded successfully!")
st.subheader("Closing Price with Date")
# Plotting the data
fig = plt.figure(figsize=(10, 6))
plt.plot(df["Close"])
plt.xlabel("Date")
plt.ylabel("Price")
plt.title(f"Stock Prices for {ticker_symbol} from {start_date} to {end_date}")
plt.xticks(rotation=45)
plt.grid(True)
# Display the plot
st.pyplot(fig)
df.reset_index(inplace=True)
# Determine which columns to drop based on their existence in the DataFrame
cols_to_drop = ['Date']
if 'Adj Close' in df.columns:
cols_to_drop.append('Adj Close')
df.drop(cols_to_drop, axis=1, inplace=True)
# Let's understand the 100 days moving average along with 200 days moving average
ma100 = df['Close'].rolling(100).mean()
# ma100
ma200 = df['Close'].rolling(200).mean()
# ma200
st.subheader("Closing Price with Date along 100 days moving average")
fig = plt.figure(figsize=(10, 6))
plt.plot(df['Close'])
plt.plot(df['Close'], label='Close Price', color='b')
plt.plot(ma100, 'r')
st.pyplot(fig)
st.subheader("Closing Price with Date along 200 days moving average")
fig = plt.figure(figsize=(10, 6))
plt.plot(df['Close'], label='Close Price', color='b')
plt.plot(ma200, 'g')
st.pyplot(fig)
st.write("Now, let's understand the relationship between these two plots")
st.subheader("100 days MA with 200 days MA")
fig = plt.figure(figsize=(10, 6))
plt.plot(df['Close'], label='Close Price', color='b')
plt.plot(ma100, 'r', label='100 days MA')
plt.plot(ma200, 'g', label='200 days MA')
st.pyplot(fig)
st.write("From the above plot, We can say that,\n1. when the 100 days MA, crosses above the 200 days MA, it's a buy signal\n2. When 100 days MA crosses below the 200 days MA, it's a sell signal\n3. When both the MA's are close to each other, it's a neutral signal\n\nThis is a simple moving average strategy to understand the stock price movement\n\nHope you find this helpful!")
prediction_load_state = st.text("\n\nLoading the model for predictions...")
training_data= pd.DataFrame(df['Close'][0: int(len(df['Close']) * 0.70 )]) # 70% of the data as training data
test_data= pd.DataFrame(df['Close'][int(len(df['Close']) * 0.70 ): ] )# remaining 30% of the data as testing data
scaler = MinMaxScaler(feature_range=(0,1))
training_data_array = scaler.fit_transform(training_data)
# SPlitting the data into x_train and y_train
x_train = []
y_train = []
# Training with 100 days of data, and predicting the 101st day data.
for i in range(100, training_data_array.shape[0]):
x_train.append(training_data_array[i-100: i]) # First 0 - 99 days data gone as in training
y_train.append(training_data_array[i, 0]) # 100th day data as output
x_train, y_train = np.array(x_train), np.array(y_train)
model = load_model('keras_model1_self.h5')
# To make test predictions for the first row of testing data
# we need last 100 days data, that we can fetch from the last 100 rows of
# training data.
past_100_days = training_data.tail(100)
past_100_days.reset_index(drop=True, inplace=True)
test_data.reset_index(drop=True, inplace=True)
# Concatenate past_100_days and test_data with ordered indices
final_df_testing = pd.concat([past_100_days, test_data], ignore_index=True)
testing_data_array = scaler.fit_transform(final_df_testing)
# Now, create the x_test and y_test, to evaluate the model, and make predictions.
x_test = []
y_test = []
for i in range(100, testing_data_array.shape[0]):
x_test.append(testing_data_array[i-100: i])
y_test.append(testing_data_array[i, 0])
x_test, y_test = np.array(x_test), np.array(y_test)
y_pred = model.predict(x_test)
# Now, go inverse scale them, to get actual accuracy and easy analysis of
# the predictions.
scale = scaler.scale_[0]
scale_factor = 1/ scale
y_test_actual = y_test * scale_factor
y_pred_actual = y_pred * scale_factor
pred_fig = plt.figure(figsize=(10, 6))
plt.plot(y_test_actual, 'g', label='Actual')
plt.plot(y_pred_actual, 'b', label='Predicted')
plt.title('Actual vs Predicted')
plt.legend()
# plt.show()
st.pyplot(pred_fig)
prediction_load_state.text("\n\nPredictions made successfully!")
st.write("The model's prediction for the next month is as follows:")
st.write("Precaution: Stock market is based on other factors as well, so don't just rely on this model for your investments.")
st.write("Please consult your financial advisor before making any investment decisions.")
# The model uses last 100 days, to predict the 101 th day, we need to predict the data using the mix of previous 100 days data and the next day data.
# So, we need to append the last 100 days of training data to the testing data.
# This is done to make the model predict the next day data, using the previous 100 days data.
# Now, let's predict the next day data, using the last 100 days data.
# next_day_data = testing_data_array[-100:]
# next_day_data = np.reshape(next_day_data, (1, 100, 1))
# next_day_prediction = model.predict(next_day_data)
# next_day_prediction = next_day_prediction * scale_factor
# st.write("The model predicts the next day's stock price to be: ", next_day_prediction[0][0])
# Now, show a plot showing the previous scenario and the upcoming 7 days trend stock prediction
# using the LSTM model.
st.subheader("Stock Price Prediction for the next 30 days")
predictions = []
# st.write(next_day_data = testing_data_array[-100:])
for i in range(1, last_60_days_comparison + future_30_days + 1):
next_day_data = testing_data_array[-160: -60]
next_day_data = np.reshape(next_day_data, (1, 100, 1)) # reshaping the data
next_day_prediction = model.predict(next_day_data)
predictions.append(next_day_prediction[0][0])
testing_data_array = np.append(testing_data_array, next_day_prediction)
testing_data_array = np.reshape(testing_data_array, (testing_data_array.shape[0], 1))
next_day_data = testing_data_array[-100:]
next_day_data = np.reshape(next_day_data, (1, 100, 1))
# 30 days previous + 30 days future
predictions = np.array(predictions)
predictions = predictions * scale_factor
# Create a combined list of days (30 days actual and their predictions along the future 30 days prediction)
combined_days = [i for i in range(1, last_60_days_comparison + future_30_days + 1)] # last 30 days actual + next 30 days prediction
# Plot the results
fig = plt.figure(figsize=(10, 6))
plt.plot(combined_days, predictions, 'ro-')
plt.plot(y_test_actual[-last_60_days_comparison:], 'bo-')
plt.axvline(x=prediction_start_date, color='b', linestyle='--', label='Prediction Start')
plt.xlabel("Days")
plt.ylabel("Price")
plt.title("Stock Price Prediction for the next 45 days")
plt.legend(['Predicted', 'Prediction Start'])
st.pyplot(fig)
st.subheader("Model Metrics")
metric_show_state = st.text("Calculating the model metrics...")
y_pred_train = model.predict(x_train)
mae_train = mean_absolute_error(y_train, y_pred_train)
rmse_train = root_mean_squared_error(y_train, y_pred_train)
st.subheader("Model Metrics for Training Data")
st.write("Mean Absolute Error: ", mae_train)
st.write("Root Mean Squared Error: ", rmse_train)
mae_test = mean_absolute_error(y_test, y_pred)
rmse_test = root_mean_squared_error(y_test, y_pred)
st.subheader("Model Metrics for Testing Data")
st.write("Mean Absolute Error: ", mae_test)
st.write("Root Mean Squared Error: ", rmse_test)
metric_show_state.text("Model metrics calculated successfully!")
def main():
# TO remove streamlit branding and other running animation
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
# Spinners
bar = st.progress(0)
for i in range(101):
bar.progress(i)
# time.sleep(0.02) # Adjust the sleep time for the desired speed
st.balloons()
# Create sidebar section for app description and links
# Sidebar content
st.sidebar.header("Stock Market Trend Predictor :moneybag:")
st.sidebar.write("Description :male-detective:")
st.sidebar.write("""
This web app visualizes historical stock prices and predicts future trends using deep learning techniques. It analyzes stock prices over a specified period, calculates moving averages, and uses a Long Short-Term Memory (LSTM) neural network to predict future price movements.
\nSkills Enhanced:\n
- π Time Series Analysis
- π» Deep Learning
- π Python
- π Data Visualization
\nSteps:\n
1. Data Acquisition: Fetch historical stock prices using the Yahoo Finance API.
2. Data Preprocessing: Clean data, calculate moving averages, and prepare training/testing sets.
3. Data Visualization: Visualize stock prices, moving averages, and predictive model results.
4. Model Training: Train an LSTM neural network on historical stock prices.
5. Model Prediction: Predict future stock prices using the trained model.
By leveraging deep learning, this app helps users understand stock price trends and make informed investment decisions.
\n**Credits** π
\nDeveloper: Aniket Panchal
\nGitHub: [Aniket2021448](https://github.com/Aniket2021448)
\n**Contact** π§
\nFor inquiries or feedback, please contact [email protected]
\n**Portfolio** πΌ
\nCheck out my portfolio website: [Your Portfolio Website Link](https://aniket2021448.github.io/My-portfolio/)
""")
# Dropdown menu for other app links
st.sidebar.write("In case the apps are down, because of less usage")
st.sidebar.write("Kindly reach out to me @ [email protected]")
# Create the form
if __name__ == "__main__":
main() |