File size: 11,826 Bytes
0ab0e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116b148
 
 
 
 
 
 
 
0ab0e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
import yfinance as yf
import datetime as datetime
from keras.models import load_model

from sklearn.metrics import mean_absolute_error, root_mean_squared_error


st.set_page_config(page_title="Stock Price Prediction", page_icon=":moneybag:")
prediction_start_date = last_60_days_comparison = 60
future_30_days = 30

# Initialize session state for metrics visibility
if 'show_metrics' not in st.session_state:
    st.session_state.show_metrics = False
# Page title
st.title("Stock Price Visualization and Prediction :moneybag:")

# Create a form for user inputs
with st.form("user_inputs"):
    # Form fields for collecting user inputs
    start_date = st.date_input("Select a start date", datetime.date.today())
    end_date = st.date_input("Select a end date", datetime.date.today())
    ticker_symbol = st.text_input("Enter the stock ticker symbol (e.g., AAPL)", "AAPL")
    # Form submit button
    submit_button = st.form_submit_button("Generate Plot")
# Check if the user has submitted the inputs
if submit_button:
    data_load_state = st.text("Loading data...")
    # Convert start_date to the desired format
    start_date = start_date.strftime("%Y-%m-%d")
    end_date = datetime.date.today().strftime("%Y-%m-%d") or '2024-01-01'

    df = yf.download(ticker_symbol, start_date, end_date)
    st.write(df.describe())
    data_load_state.text("Data loaded successfully!")

    st.subheader("Closing Price with Date")
    # Plotting the data
    fig = plt.figure(figsize=(10, 6))
    plt.plot(df["Close"])
    plt.xlabel("Date")
    plt.ylabel("Price")
    plt.title(f"Stock Prices for {ticker_symbol} from {start_date} to {end_date}")
    plt.xticks(rotation=45)
    plt.grid(True)
    
    # Display the plot
    st.pyplot(fig)

    df.reset_index(inplace=True)

    # Determine which columns to drop based on their existence in the DataFrame
    cols_to_drop = ['Date']
    if 'Adj Close' in df.columns:
        cols_to_drop.append('Adj Close')
    
    df.drop(cols_to_drop, axis=1, inplace=True)

    

    # Let's understand the 100 days moving average along with 200 days moving average
    ma100 = df['Close'].rolling(100).mean()
    # ma100

    ma200 = df['Close'].rolling(200).mean()
    # ma200


    st.subheader("Closing Price with Date along 100 days moving average")
    fig = plt.figure(figsize=(10, 6))
    plt.plot(df['Close'])
    plt.plot(df['Close'], label='Close Price', color='b')
    plt.plot(ma100, 'r')

    st.pyplot(fig)

    st.subheader("Closing Price with Date along 200 days moving average")
    fig = plt.figure(figsize=(10, 6))
    plt.plot(df['Close'], label='Close Price', color='b')
    plt.plot(ma200, 'g')

    st.pyplot(fig)


    st.write("Now, let's understand the relationship between these two plots")
    
    st.subheader("100 days MA with 200 days MA")
    fig = plt.figure(figsize=(10, 6))
    plt.plot(df['Close'], label='Close Price', color='b')
    plt.plot(ma100, 'r', label='100 days MA')
    plt.plot(ma200, 'g', label='200 days MA')

    st.pyplot(fig)

    st.write("From the above plot, We can say that,\n1. when the 100 days MA, crosses above the 200 days MA, it's a buy signal\n2. When 100 days MA crosses below the 200 days MA, it's a sell signal\n3. When both the MA's are close to each other, it's a neutral signal\n\nThis is a simple moving average strategy to understand the stock price movement\n\nHope you find this helpful!")
    
    prediction_load_state = st.text("\n\nLoading the model for predictions...")

    training_data= pd.DataFrame(df['Close'][0: int(len(df['Close']) * 0.70 )]) # 70% of the data as training data
    test_data= pd.DataFrame(df['Close'][int(len(df['Close']) * 0.70 ): ] )# remaining 30% of the data as testing data
    
    scaler = MinMaxScaler(feature_range=(0,1))
    training_data_array = scaler.fit_transform(training_data)

    # SPlitting the data into x_train and y_train
    x_train = []
    y_train = []

    # Training with 100 days of data, and predicting the 101st day data.
    for i in range(100, training_data_array.shape[0]):
        x_train.append(training_data_array[i-100: i]) # First 0 - 99 days data gone as in training
        y_train.append(training_data_array[i, 0]) # 100th day data as output
    
    x_train, y_train = np.array(x_train), np.array(y_train)
    
    model = load_model('keras_model1_self.h5')
    
    # To make test predictions for the first row of testing data
    # we need last 100 days data, that we can fetch from the last 100 rows of 
    # training data. 
    past_100_days = training_data.tail(100)

    past_100_days.reset_index(drop=True, inplace=True)
    test_data.reset_index(drop=True, inplace=True)

    # Concatenate past_100_days and test_data with ordered indices
    final_df_testing = pd.concat([past_100_days, test_data], ignore_index=True)

    testing_data_array = scaler.fit_transform(final_df_testing)

    # Now, create the x_test and y_test, to evaluate the model, and make predictions.
    x_test = []
    y_test = []

    for i in range(100, testing_data_array.shape[0]):
        x_test.append(testing_data_array[i-100: i])
        y_test.append(testing_data_array[i, 0])

    x_test, y_test = np.array(x_test), np.array(y_test)

    y_pred = model.predict(x_test)

    # Now, go inverse scale them, to get actual accuracy and easy analysis of
    # the predictions.

    scale = scaler.scale_[0]
    scale_factor = 1/ scale
    y_test_actual = y_test * scale_factor
    y_pred_actual = y_pred * scale_factor

    pred_fig = plt.figure(figsize=(10, 6))
    plt.plot(y_test_actual, 'g', label='Actual')
    plt.plot(y_pred_actual, 'b', label='Predicted')
    plt.title('Actual vs Predicted')
    plt.legend()
    # plt.show()
    st.pyplot(pred_fig)
    prediction_load_state.text("\n\nPredictions made successfully!")

    st.write("The model's prediction for the next month is as follows:")
    st.write("Precaution: Stock market is based on other factors as well, so don't just rely on this model for your investments.")
    st.write("Please consult your financial advisor before making any investment decisions.")

    # The model uses last 100 days, to predict the 101 th day, we need to predict the data using the mix of previous 100 days data and the next day data.
    # So, we need to append the last 100 days of training data to the testing data.
    # This is done to make the model predict the next day data, using the previous 100 days data.

    # Now, let's predict the next day data, using the last 100 days data.   
    # next_day_data = testing_data_array[-100:]
    # next_day_data = np.reshape(next_day_data, (1, 100, 1))
    # next_day_prediction = model.predict(next_day_data)
    # next_day_prediction = next_day_prediction * scale_factor
    # st.write("The model predicts the next day's stock price to be: ", next_day_prediction[0][0])
    # Now, show a plot showing the previous scenario and the upcoming 7 days trend stock prediction 
    # using the LSTM model.
    st.subheader("Stock Price Prediction for the next 30 days")



    predictions = []
    # st.write(next_day_data = testing_data_array[-100:])

    for i in range(1, last_60_days_comparison + future_30_days + 1):
        next_day_data = testing_data_array[-160: -60]
        next_day_data = np.reshape(next_day_data, (1, 100, 1)) # reshaping the data
        next_day_prediction = model.predict(next_day_data) 

        predictions.append(next_day_prediction[0][0])
        testing_data_array = np.append(testing_data_array, next_day_prediction)
        testing_data_array = np.reshape(testing_data_array, (testing_data_array.shape[0], 1))
        next_day_data = testing_data_array[-100:]
        next_day_data = np.reshape(next_day_data, (1, 100, 1))

    # 30 days previous + 30 days future


    predictions = np.array(predictions)
    predictions = predictions * scale_factor

    # Create a combined list of days (30 days actual and their predictions along the future 30 days prediction)
    combined_days = [i for i in range(1, last_60_days_comparison + future_30_days + 1)] # last 30 days actual + next 30 days prediction


    # Plot the results
    fig = plt.figure(figsize=(10, 6))
    plt.plot(combined_days, predictions, 'ro-')
    plt.plot(y_test_actual[-last_60_days_comparison:], 'bo-')
    plt.axvline(x=prediction_start_date, color='b', linestyle='--', label='Prediction Start')
    plt.xlabel("Days")
    plt.ylabel("Price")
    plt.title("Stock Price Prediction for the next 45 days")
    plt.legend(['Predicted', 'Prediction Start'])
    st.pyplot(fig)


    st.subheader("Model Metrics")
    metric_show_state = st.text("Calculating the model metrics...")
    
    y_pred_train = model.predict(x_train)
    mae_train = mean_absolute_error(y_train, y_pred_train)
    rmse_train = root_mean_squared_error(y_train, y_pred_train)
    st.subheader("Model Metrics for Training Data")
    st.write("Mean Absolute Error: ", mae_train)
    st.write("Root Mean Squared Error: ", rmse_train)

    mae_test = mean_absolute_error(y_test, y_pred)
    rmse_test = root_mean_squared_error(y_test, y_pred)
    st.subheader("Model Metrics for Testing Data")
    st.write("Mean Absolute Error: ", mae_test)
    st.write("Root Mean Squared Error: ", rmse_test)
    metric_show_state.text("Model metrics calculated successfully!")

    

    

def main():
    
    
    # TO remove streamlit branding and other running animation
    hide_st_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
    """
    st.markdown(hide_st_style, unsafe_allow_html=True)

    # Spinners
    bar = st.progress(0)
    for i in range(101):
        bar.progress(i)
        # time.sleep(0.02)  # Adjust the sleep time for the desired speed

    st.balloons()

    # Create sidebar section for app description and links
    # Sidebar content
    st.sidebar.header("Stock Market Trend Predictor :moneybag:")
    st.sidebar.write("Description :male-detective:")
    st.sidebar.write("""
    This web app visualizes historical stock prices and predicts future trends using deep learning techniques. It analyzes stock prices over a specified period, calculates moving averages, and uses a Long Short-Term Memory (LSTM) neural network to predict future price movements.
        
    \nSkills Enhanced:\n
    - πŸ“ˆ Time Series Analysis
    - πŸ’» Deep Learning
    - 🐍 Python
    - πŸ“Š Data Visualization

    \nSteps:\n
    1. Data Acquisition: Fetch historical stock prices using the Yahoo Finance API.
    2. Data Preprocessing: Clean data, calculate moving averages, and prepare training/testing sets.
    3. Data Visualization: Visualize stock prices, moving averages, and predictive model results.
    4. Model Training: Train an LSTM neural network on historical stock prices.
    5. Model Prediction: Predict future stock prices using the trained model.

    By leveraging deep learning, this app helps users understand stock price trends and make informed investment decisions.
            
    \n**Credits** 🌟
    \nDeveloper: Aniket Panchal
    \nGitHub: [Aniket2021448](https://github.com/Aniket2021448)

    \n**Contact** πŸ“§
    \nFor inquiries or feedback, please contact [email protected]
    \n**Portfolio** πŸ’Ό
    \nCheck out my portfolio website: [Your Portfolio Website Link](https://aniket2021448.github.io/My-portfolio/)
    """)
    
    # Dropdown menu for other app links

    st.sidebar.write("In case the apps are down, because of less usage")
    st.sidebar.write("Kindly reach out to me @ [email protected]")
    

    # Create the form
    

if __name__ == "__main__":
    main()