File size: 21,403 Bytes
985ead6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b95cf
 
aaac38d
 
985ead6
79b95cf
b8dee1c
79b95cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8dee1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985ead6
b8dee1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b95cf
b8dee1c
 
efcd1a8
 
 
 
 
 
 
 
 
 
 
dd04276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985ead6
 
 
 
 
dd04276
efcd1a8
 
 
 
 
 
 
 
 
 
985ead6
efcd1a8
 
b8dee1c
985ead6
 
 
efcd1a8
 
b8dee1c
 
985ead6
b8dee1c
 
 
 
985ead6
b8dee1c
 
985ead6
b8dee1c
 
efcd1a8
985ead6
b8dee1c
efcd1a8
 
 
 
 
 
 
985ead6
efcd1a8
 
985ead6
efcd1a8
 
b8dee1c
79b95cf
 
 
 
 
 
b8dee1c
79b95cf
 
 
 
 
 
 
 
 
b8dee1c
 
79b95cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# import os
# import requests
# import cv2
# import re
# from flask import Flask, request, jsonify, render_template
# from deepgram import DeepgramClient, PrerecordedOptions
# from dotenv import load_dotenv
# import tempfile
# import json
# import subprocess


# import warnings
# warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")

# app = Flask(__name__)
# print("APP IS RUNNING, ANIKET")

# # Load the .env file
# load_dotenv()

# print("ENV LOADED, ANIKET")

# # Fetch the API key from the .env file
# API_KEY = os.getenv("FIRST_API_KEY")
# DEEPGRAM_API_KEY = os.getenv("SECOND_API_KEY")

# # Ensure the API key is loaded correctly
# if not API_KEY:
#     raise ValueError("API Key not found. Make sure it is set in the .env file.")

# if not DEEPGRAM_API_KEY:
#     raise ValueError("DEEPGRAM_API_KEY not found. Make sure it is set in the .env file.")

# GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
# GEMINI_API_KEY = API_KEY

# @app.route("/", methods=["GET"])
# def health_check():
#     return jsonify({"status": "success", "message": "API is running successfully!"}), 200


# def transcribe_audio(wav_file_path):
#     """
#     Transcribe audio from a video file using Deepgram API synchronously.
    
#     Args:
#         wav_file_path (str): Path to save the converted WAV file.
#     Returns:
#         dict: A dictionary containing status, transcript, or error message.
#     """
#     print("Entered the transcribe_audio function")
#     try:
#         # Initialize Deepgram client
#         deepgram = DeepgramClient(DEEPGRAM_API_KEY)

#         # Open the converted WAV file
#         with open(wav_file_path, 'rb') as buffer_data:
#             payload = {'buffer': buffer_data}

#             # Configure transcription options
#             options = PrerecordedOptions(
#                 smart_format=True, model="nova-2", language="en-US"
#             )

#             # Transcribe the audio
#             response = deepgram.listen.prerecorded.v('1').transcribe_file(payload, options)

#             # Check if the response is valid
#             if response:
#                 # print("Request successful! Processing response.")

#                 # Convert response to JSON string
#                 try:
#                     data_str = response.to_json(indent=4)
#                 except AttributeError as e:
#                     return {"status": "error", "message": f"Error converting response to JSON: {e}"}

#                 # Parse the JSON string to a Python dictionary
#                 try:
#                     data = json.loads(data_str)
#                 except json.JSONDecodeError as e:
#                     return {"status": "error", "message": f"Error parsing JSON string: {e}"}

#                 # Extract the transcript
#                 try:
#                     transcript = data["results"]["channels"][0]["alternatives"][0]["transcript"]
#                 except KeyError as e:
#                     return {"status": "error", "message": f"Error extracting transcript: {e}"}

#                 print(f"Transcript obtained: {transcript}")
#                 # Step: Save the transcript to a text file
#                 transcript_file_path = "transcript_from_transcribe_audio.txt"
#                 with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
#                     transcript_file.write(transcript)
#                 # print(f"Transcript saved to file: {transcript_file_path}")
                
#                 return transcript
#             else:
#                 return {"status": "error", "message": "Invalid response from Deepgram."}

#     except FileNotFoundError:
#         return {"status": "error", "message": f"Video file not found: {wav_file_path}"}
#     except Exception as e:
#         return {"status": "error", "message": f"Unexpected error: {e}"}
#     finally:
#         # Clean up the temporary WAV file
#         if os.path.exists(wav_file_path):
#             os.remove(wav_file_path)
#             print(f"Temporary WAV file deleted: {wav_file_path}")
            


# def download_video(url, temp_video_path):
#     """Download video (MP4 format) from the given URL and save it to temp_video_path."""
#     response = requests.get(url, stream=True)
#     if response.status_code == 200:
#         with open(temp_video_path, 'wb') as f:
#             for chunk in response.iter_content(chunk_size=1024):
#                 f.write(chunk)
#         print(f"Audio downloaded successfully to {temp_video_path}")
#     else:
#         raise Exception(f"Failed to download audio, status code: {response.status_code}")


# def preprocess_frame(frame):
#     """Preprocess the frame for better OCR accuracy."""
#     gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#     denoised = cv2.medianBlur(gray, 3)
#     _, thresh = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
#     return thresh

# def clean_ocr_text(text):
#     """Clean the OCR output by removing noise and unwanted characters."""
#     cleaned_text = re.sub(r'[^A-Za-z0-9\s,.!?-]', '', text)
#     cleaned_text = '\n'.join([line.strip() for line in cleaned_text.splitlines() if len(line.strip()) > 2])
#     return cleaned_text

# def get_information_from_video_using_OCR(video_path, interval=1):
#     """Extract text from video frames using OCR and return the combined text content."""
#     cap = cv2.VideoCapture(video_path)
#     fps = int(cap.get(cv2.CAP_PROP_FPS))
#     frame_interval = interval * fps
#     frame_count = 0
#     extracted_text = ""

#     print("Starting text extraction from video...")

#     while cap.isOpened():
#         ret, frame = cap.read()
#         if not ret:
#             break

#         if frame_count % frame_interval == 0:
#             preprocessed_frame = preprocess_frame(frame)
#             text = pytesseract.image_to_string(preprocessed_frame, lang='eng', config='--psm 6 --oem 3')
#             cleaned_text = clean_ocr_text(text)
#             if cleaned_text:
#                 extracted_text += cleaned_text + "\n\n"
#                 print(f"Text found at frame {frame_count}: {cleaned_text[:50]}...")

#         frame_count += 1

#     cap.release()
#     print("Text extraction completed.")
#     return extracted_text




# @app.route('/process-video', methods=['POST'])
# def process_video():
#     if 'videoUrl' not in request.json:
#         return jsonify({"error": "No video URL provided"}), 400

#     video_url = request.json['videoUrl']
#     temp_video_path = None

#     try:
#         # Step 1: Download the WAV file from the provided URL
#         with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
#             temp_video_path = temp_video_file.name
#             download_video(video_url, temp_video_path)
#         interval = 1
#         # Step 2: get the information from the downloaded MP4 file synchronously
#         video_info = get_information_from_video_using_OCR(temp_video_path, interval)

#         if not video_info:
#             video_info = ""

        

#         # Step 2: Convert the MP4 to WAV
#         with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
#             temp_wav_path = temp_wav_file.name
#             convert_mp4_to_wav(temp_video_path, temp_wav_path)

#         audio_info = transcribe_audio(temp_wav_path)
        
#         # If no transcription present, use an empty string
#         if not audio_info:
#             audio_info = ""

        
            
#         # Step 3: Generate structured recipe information using Gemini API synchronously
#         structured_data = query_gemini_api(video_info, audio_info)

#         return jsonify(structured_data)

#     except Exception as e:
#         return jsonify({"error": str(e)}), 500

#     finally:
#         # Clean up temporary audio file
#         if temp_video_path and os.path.exists(temp_video_path):
#             os.remove(temp_video_path)
#             print(f"Temporary audio file deleted: {temp_video_path}")






# def query_gemini_api(video_transcription, audio_transcription):
#     """
#     Send transcription text to Gemini API and fetch structured recipe information synchronously.
#     """
#     try:
#         # Define the structured prompt
#         prompt = (
#             "Analyze the provided cooking video and audio transcription combined and based on the combined information extract the following structured information:\n"
#             "1. Recipe Name: Identify the name of the dish being prepared.\n"
#             "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
#             "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
#             "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
#             "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
#             "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
#             "7. Serving size: In count of people or portion size.\n"
#             "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
#             "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
#             "Also, make sure not to provide anything else or any other information or warning or text apart from the above things mentioned."
#             f"Text: {audio_transcription}\n"
#             f"Text: {video_transcription}\n"
            
#         )

#         # Prepare the payload and headers
#         payload = {
#             "contents": [
#                 {
#                     "parts": [
#                         {"text": prompt}
#                     ]
#                 }
#             ]
#         }
#         headers = {"Content-Type": "application/json"}

#         # Send request to Gemini API synchronously
#         response = requests.post(
#             f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
#             json=payload,
#             headers=headers,
#         )

#         # Raise error if response code is not 200
#         response.raise_for_status()

#         data = response.json()

#         return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")

#     except requests.exceptions.RequestException as e:
#         print(f"Error querying Gemini API: {e}")
#         return {"error": str(e)}


# if __name__ == '__main__':
#     app.run(debug=True)



import os
import requests
import cv2
import re
import pytesseract
from flask import Flask, request, jsonify, render_template
from deepgram import DeepgramClient, PrerecordedOptions
from dotenv import load_dotenv
import tempfile
import json
import subprocess


import warnings
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")

app = Flask(__name__)
print("APP IS RUNNING, ANIKET")

# Load the .env file
load_dotenv()

print("ENV LOADED, ANIKET")

# Fetch the API key from the .env file
API_KEY = os.getenv("FIRST_API_KEY")
DEEPGRAM_API_KEY = os.getenv("SECOND_API_KEY")

# Ensure the API key is loaded correctly
if not API_KEY:
    raise ValueError("API Key not found. Make sure it is set in the .env file.")

if not DEEPGRAM_API_KEY:
    raise ValueError("DEEPGRAM_API_KEY not found. Make sure it is set in the .env file.")

GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
GEMINI_API_KEY = API_KEY

@app.route("/", methods=["GET"])
def health_check():
    return jsonify({"status": "success", "message": "API is running successfully!"}), 200


def transcribe_audio(wav_file_path):
    """
    Transcribe audio from a video file using Deepgram API synchronously.
    
    Args:
        wav_file_path (str): Path to save the converted WAV file.
    Returns:
        dict: A dictionary containing status, transcript, or error message.
    """
    print("Entered the transcribe_audio function")
    try:
        # Initialize Deepgram client
        deepgram = DeepgramClient(DEEPGRAM_API_KEY)

        # Open the converted WAV file
        with open(wav_file_path, 'rb') as buffer_data:
            payload = {'buffer': buffer_data}

            # Configure transcription options
            options = PrerecordedOptions(
                smart_format=True, model="nova-2", language="en-US"
            )

            # Transcribe the audio
            response = deepgram.listen.prerecorded.v('1').transcribe_file(payload, options)

            # Check if the response is valid
            if response:
                try:
                    data_str = response.to_json(indent=4)
                except AttributeError as e:
                    return {"status": "error", "message": f"Error converting response to JSON: {e}"}

                # Parse the JSON string to a Python dictionary
                try:
                    data = json.loads(data_str)
                except json.JSONDecodeError as e:
                    return {"status": "error", "message": f"Error parsing JSON string: {e}"}

                # Extract the transcript
                try:
                    transcript = data["results"]["channels"][0]["alternatives"][0]["transcript"]
                except KeyError as e:
                    return {"status": "error", "message": f"Error extracting transcript: {e}"}

                print(f"Transcript obtained: {transcript}")
                # Save the transcript to a text file
                transcript_file_path = "transcript_from_transcribe_audio.txt"
                with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
                    transcript_file.write(transcript)
                
                return transcript
            else:
                return {"status": "error", "message": "Invalid response from Deepgram."}

    except FileNotFoundError:
        return {"status": "error", "message": f"Video file not found: {wav_file_path}"}
    except Exception as e:
        return {"status": "error", "message": f"Unexpected error: {e}"}
    finally:
        # Clean up the temporary WAV file
        if os.path.exists(wav_file_path):
            os.remove(wav_file_path)
            print(f"Temporary WAV file deleted: {wav_file_path}")
            


def download_video(url, temp_video_path):
    """Download video (MP4 format) from the given URL and save it to temp_video_path."""
    response = requests.get(url, stream=True)
    if response.status_code == 200:
        with open(temp_video_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=1024):
                f.write(chunk)
        print(f"Audio downloaded successfully to {temp_video_path}")
    else:
        raise Exception(f"Failed to download audio, status code: {response.status_code}")


def preprocess_frame(frame):
    """Preprocess the frame for better OCR accuracy."""
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    denoised = cv2.medianBlur(gray, 3)
    _, thresh = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    return thresh

def clean_ocr_text(text):
    """Clean the OCR output by removing noise and unwanted characters."""
    cleaned_text = re.sub(r'[^A-Za-z0-9\s,.!?-]', '', text)
    cleaned_text = '\n'.join([line.strip() for line in cleaned_text.splitlines() if len(line.strip()) > 2])
    return cleaned_text

def get_information_from_video_using_OCR(video_path, interval=1):
    """Extract text from video frames using OCR and return the combined text content."""
    cap = cv2.VideoCapture(video_path)
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    frame_interval = interval * fps
    frame_count = 0
    extracted_text = ""

    print("Starting text extraction from video...")

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        if frame_count % frame_interval == 0:
            preprocessed_frame = preprocess_frame(frame)
            text = pytesseract.image_to_string(preprocessed_frame, lang='eng', config='--psm 6 --oem 3')
            cleaned_text = clean_ocr_text(text)
            if cleaned_text:
                extracted_text += cleaned_text + "\n\n"
                print(f"Text found at frame {frame_count}: {cleaned_text[:50]}...")

        frame_count += 1

    cap.release()
    print("Text extraction completed.")
    return extracted_text


def convert_mp4_to_wav(mp4_path, wav_path):
    """Convert an MP4 file to a WAV file."""
    command = f"ffmpeg -i {mp4_path} -vn -acodec pcm_s16le -ar 44100 -ac 2 {wav_path}"
    subprocess.run(command, shell=True, check=True)
    print(f"MP4 file converted to WAV: {wav_path}")


@app.route('/process-video', methods=['POST'])
def process_video():
    if 'videoUrl' not in request.json:
        return jsonify({"error": "No video URL provided"}), 400

    video_url = request.json['videoUrl']
    temp_video_path = None

    try:
        # Step 1: Download the MP4 file from the provided URL
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
            temp_video_path = temp_video_file.name
            download_video(video_url, temp_video_path)

        # Step 2: Get the information from the downloaded MP4 file synchronously
        video_info = get_information_from_video_using_OCR(temp_video_path, interval=1)

        if not video_info:
            video_info = ""

        # Step 3: Convert the MP4 to WAV
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
            temp_wav_path = temp_wav_file.name
            convert_mp4_to_wav(temp_video_path, temp_wav_path)

        # Step 4: Transcribe the audio
        audio_info = transcribe_audio(temp_wav_path)
        
        # If no transcription is present, use an empty string
        if not audio_info:
            audio_info = ""

        # Step 5: Generate structured recipe information using Gemini API synchronously
        structured_data = query_gemini_api(video_info, audio_info)

        return jsonify(structured_data)

    except Exception as e:
        return jsonify({"error": str(e)}), 500

    finally:
        # Clean up temporary video file
        if temp_video_path and os.path.exists(temp_video_path):
            os.remove(temp_video_path)
            print(f"Temporary video file deleted: {temp_video_path}")


def query_gemini_api(video_transcription, audio_transcription):
    """
    Send transcription text to Gemini API and fetch structured recipe information synchronously.
    """
    try:
        # Define the structured prompt
        prompt = (
            "Analyze the provided cooking video and audio transcription combined and based on the combined information extract the following structured information:\n"
            "1. Recipe Name: Identify the name of the dish being prepared.\n"
            "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
            "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
            "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
            "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
            "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
            "7. Serving size: In count of people or portion size.\n"
            "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
            "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
            f"Text: {audio_transcription}\n"
            f"Text: {video_transcription}\n"
        )

        # Prepare the payload and headers
        payload = {
            "contents": [
                {
                    "parts": [
                        {"text": prompt}
                    ]
                }
            ]
        }
        headers = {"Content-Type": "application/json"}

        # Send request to Gemini API synchronously
        response = requests.post(
            f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
            json=payload,
            headers=headers,
        )

        # Raise error if response code is not 200
        response.raise_for_status()

        data = response.json()

        return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")

    except requests.exceptions.RequestException as e:
        print(f"Error querying Gemini API: {e}")
        return {"error": str(e)}


if __name__ == '__main__':
    app.run(debug=True)