Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,22 @@
|
|
| 1 |
-
import
|
| 2 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
|
| 4 |
-
# Load models and tokenizers
|
| 5 |
-
@st.cache_resource
|
| 6 |
def load_models():
|
| 7 |
question_model_name = "mrm8488/t5-base-finetuned-question-generation-ap"
|
| 8 |
recipe_model_name = "flax-community/t5-recipe-generation"
|
| 9 |
instruct_model_name = "norallm/normistral-7b-warm-instruct"
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
question_tokenizer = T5Tokenizer.from_pretrained(question_model_name)
|
| 14 |
|
| 15 |
-
# Load recipe generation model and tokenizer
|
| 16 |
recipe_model = AutoModelForSeq2SeqLM.from_pretrained(recipe_model_name)
|
| 17 |
recipe_tokenizer = AutoTokenizer.from_pretrained(recipe_model_name)
|
| 18 |
|
| 19 |
-
# Load
|
| 20 |
-
instruct_model =
|
| 21 |
instruct_tokenizer = AutoTokenizer.from_pretrained(instruct_model_name)
|
| 22 |
|
| 23 |
return (question_model, question_tokenizer), (recipe_model, recipe_tokenizer), (instruct_model, instruct_tokenizer)
|
| 24 |
|
| 25 |
-
(question_model, question_tokenizer), (recipe_model, recipe_tokenizer), (instruct_model, instruct_tokenizer) = load_models()
|
| 26 |
-
|
| 27 |
# Function to generate a question from a given passage
|
| 28 |
def generate_question(text, model, tokenizer):
|
| 29 |
input_text = f"generate question: {text}"
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 2 |
|
|
|
|
|
|
|
| 3 |
def load_models():
|
| 4 |
question_model_name = "mrm8488/t5-base-finetuned-question-generation-ap"
|
| 5 |
recipe_model_name = "flax-community/t5-recipe-generation"
|
| 6 |
instruct_model_name = "norallm/normistral-7b-warm-instruct"
|
| 7 |
|
| 8 |
+
question_model = AutoModelForSeq2SeqLM.from_pretrained(question_model_name)
|
| 9 |
+
question_tokenizer = AutoTokenizer.from_pretrained(question_model_name)
|
|
|
|
| 10 |
|
|
|
|
| 11 |
recipe_model = AutoModelForSeq2SeqLM.from_pretrained(recipe_model_name)
|
| 12 |
recipe_tokenizer = AutoTokenizer.from_pretrained(recipe_model_name)
|
| 13 |
|
| 14 |
+
# Load instruct model as causal language model
|
| 15 |
+
instruct_model = AutoModelForCausalLM.from_pretrained(instruct_model_name)
|
| 16 |
instruct_tokenizer = AutoTokenizer.from_pretrained(instruct_model_name)
|
| 17 |
|
| 18 |
return (question_model, question_tokenizer), (recipe_model, recipe_tokenizer), (instruct_model, instruct_tokenizer)
|
| 19 |
|
|
|
|
|
|
|
| 20 |
# Function to generate a question from a given passage
|
| 21 |
def generate_question(text, model, tokenizer):
|
| 22 |
input_text = f"generate question: {text}"
|