Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,72 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
|
|
4 |
def load_models():
|
5 |
question_model_name = "mrm8488/t5-base-finetuned-question-generation-ap"
|
6 |
recipe_model_name = "flax-community/t5-recipe-generation"
|
7 |
instruct_model_name = "norallm/normistral-7b-warm-instruct"
|
8 |
-
|
|
|
9 |
question_model = AutoModelForSeq2SeqLM.from_pretrained(question_model_name)
|
10 |
question_tokenizer = AutoTokenizer.from_pretrained(question_model_name)
|
11 |
-
|
12 |
recipe_model = AutoModelForSeq2SeqLM.from_pretrained(recipe_model_name)
|
13 |
recipe_tokenizer = AutoTokenizer.from_pretrained(recipe_model_name)
|
14 |
-
|
15 |
-
# Load
|
16 |
instruct_model = AutoModelForCausalLM.from_pretrained(instruct_model_name)
|
17 |
instruct_tokenizer = AutoTokenizer.from_pretrained(instruct_model_name)
|
18 |
-
|
19 |
return (question_model, question_tokenizer), (recipe_model, recipe_tokenizer), (instruct_model, instruct_tokenizer)
|
20 |
|
21 |
-
# Function to generate
|
22 |
def generate_question(text, model, tokenizer):
|
23 |
input_text = f"generate question: {text}"
|
24 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
25 |
outputs = model.generate(input_ids)
|
26 |
-
|
27 |
-
return question
|
28 |
|
29 |
-
# Function to generate
|
30 |
-
def generate_recipe(
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
return
|
35 |
|
36 |
-
# Function to generate
|
37 |
def generate_instruction(prompt, model, tokenizer):
|
38 |
-
|
39 |
-
outputs = model.generate(
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
|
49 |
-
if
|
50 |
-
|
51 |
-
|
52 |
-
if st.button("Generate Question"):
|
53 |
-
if passage:
|
54 |
question = generate_question(passage, question_model, question_tokenizer)
|
55 |
-
st.write(
|
56 |
-
else:
|
57 |
-
st.write("Please enter a passage to generate a question.")
|
58 |
|
59 |
-
elif
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
recipe = generate_recipe(recipe_prompt, recipe_model, recipe_tokenizer)
|
65 |
-
st.write("Generated Recipe:")
|
66 |
-
st.write(recipe)
|
67 |
-
else:
|
68 |
-
st.write("Please enter ingredients or a recipe title to generate a recipe.")
|
69 |
|
70 |
-
elif
|
71 |
-
|
72 |
-
|
73 |
-
if st.button("Generate Instruction"):
|
74 |
-
if instruction_prompt:
|
75 |
instruction = generate_instruction(instruction_prompt, instruct_model, instruct_tokenizer)
|
76 |
-
st.write("Generated Instruction:")
|
77 |
-
st.write(instruction)
|
78 |
-
else:
|
79 |
-
st.write("Please enter an instruction prompt.")
|
80 |
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
2 |
import streamlit as st
|
|
|
3 |
|
4 |
+
@st.cache_resource
|
5 |
def load_models():
|
6 |
question_model_name = "mrm8488/t5-base-finetuned-question-generation-ap"
|
7 |
recipe_model_name = "flax-community/t5-recipe-generation"
|
8 |
instruct_model_name = "norallm/normistral-7b-warm-instruct"
|
9 |
+
|
10 |
+
# Load T5-based models for question generation and recipe generation
|
11 |
question_model = AutoModelForSeq2SeqLM.from_pretrained(question_model_name)
|
12 |
question_tokenizer = AutoTokenizer.from_pretrained(question_model_name)
|
13 |
+
|
14 |
recipe_model = AutoModelForSeq2SeqLM.from_pretrained(recipe_model_name)
|
15 |
recipe_tokenizer = AutoTokenizer.from_pretrained(recipe_model_name)
|
16 |
+
|
17 |
+
# Load the instruction model as a causal language model
|
18 |
instruct_model = AutoModelForCausalLM.from_pretrained(instruct_model_name)
|
19 |
instruct_tokenizer = AutoTokenizer.from_pretrained(instruct_model_name)
|
20 |
+
|
21 |
return (question_model, question_tokenizer), (recipe_model, recipe_tokenizer), (instruct_model, instruct_tokenizer)
|
22 |
|
23 |
+
# Function to generate questions using the question model
|
24 |
def generate_question(text, model, tokenizer):
|
25 |
input_text = f"generate question: {text}"
|
26 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
27 |
outputs = model.generate(input_ids)
|
28 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
29 |
|
30 |
+
# Function to generate recipes using the recipe model
|
31 |
+
def generate_recipe(ingredients, model, tokenizer):
|
32 |
+
input_text = f"generate recipe: {ingredients}"
|
33 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
34 |
+
outputs = model.generate(input_ids)
|
35 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
|
37 |
+
# Function to generate instructions using the instruction model
|
38 |
def generate_instruction(prompt, model, tokenizer):
|
39 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
40 |
+
outputs = model.generate(input_ids)
|
41 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
# Streamlit Interface
|
44 |
+
def main():
|
45 |
+
st.title("Multi-Model Application")
|
46 |
|
47 |
+
# Load all models
|
48 |
+
(question_model, question_tokenizer), (recipe_model, recipe_tokenizer), (instruct_model, instruct_tokenizer) = load_models()
|
49 |
|
50 |
+
# Tabs for different functionalities
|
51 |
+
tab = st.selectbox("Choose task", ["Question Generation", "Recipe Generation", "Instruction Following"])
|
52 |
|
53 |
+
if tab == "Question Generation":
|
54 |
+
passage = st.text_area("Enter a passage for question generation")
|
55 |
+
if st.button("Generate Question"):
|
|
|
|
|
56 |
question = generate_question(passage, question_model, question_tokenizer)
|
57 |
+
st.write("Generated Question:", question)
|
|
|
|
|
58 |
|
59 |
+
elif tab == "Recipe Generation":
|
60 |
+
ingredients = st.text_area("Enter ingredients for recipe generation")
|
61 |
+
if st.button("Generate Recipe"):
|
62 |
+
recipe = generate_recipe(ingredients, recipe_model, recipe_tokenizer)
|
63 |
+
st.write("Generated Recipe:", recipe)
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
elif tab == "Instruction Following":
|
66 |
+
instruction_prompt = st.text_area("Enter an instruction prompt")
|
67 |
+
if st.button("Generate Instruction"):
|
|
|
|
|
68 |
instruction = generate_instruction(instruction_prompt, instruct_model, instruct_tokenizer)
|
69 |
+
st.write("Generated Instruction:", instruction)
|
|
|
|
|
|
|
70 |
|
71 |
+
if __name__ == "__main__":
|
72 |
+
main()
|