GlastonR's picture
Update app.py
bb1df26 verified
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the models
tokenizer_sql = AutoTokenizer.from_pretrained("juierror/flan-t5-text2sql-with-schema-v2")
model_sql = AutoModelForSeq2SeqLM.from_pretrained("juierror/flan-t5-text2sql-with-schema-v2")
tokenizer_question = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
model_question = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
# Function to create the prompt for SQL model
def get_prompt_sql(tables, question):
return f"""convert question and table into SQL query. tables: {tables}. question: {question}"""
# Function to prepare input data for the SQL model
def prepare_input_sql(question: str, tables: dict):
tables = [f"""{table_name}({','.join(tables[table_name])})""" for table_name in tables]
tables = ", ".join(tables)
prompt = get_prompt_sql(tables, question)
input_ids = tokenizer_sql(prompt, max_length=512, return_tensors="pt").input_ids
return input_ids
# Inference function for the SQL model
def inference_sql(question: str, tables: dict) -> str:
input_data = prepare_input_sql(question=question, tables=tables)
input_data = input_data.to(model_sql.device)
outputs = model_sql.generate(inputs=input_data, num_beams=10, top_k=10, max_length=512)
return tokenizer_sql.decode(outputs[0], skip_special_tokens=True)
# Function to create the prompt for Question Generation model
def get_prompt_question(context):
return f"generate a question from the following context: {context}"
# Function to prepare input data for the Question Generation model
def prepare_input_question(context: str):
prompt = get_prompt_question(context)
input_ids = tokenizer_question(prompt, max_length=512, return_tensors="pt").input_ids
return input_ids
# Inference function for the Question Generation model
def inference_question(context: str) -> str:
input_data = prepare_input_question(context)
input_data = input_data.to(model_question.device)
outputs = model_question.generate(inputs=input_data, num_beams=10, top_k=10, max_length=512)
return tokenizer_question.decode(outputs[0], skip_special_tokens=True)
# Streamlit UI
def main():
st.title("Multi-Model: Text to SQL and Question Generation")
# Model selection
model_choice = st.selectbox("Select a model", ["Text to SQL", "Question Generation"])
# Input question and table schema for SQL model
if model_choice == "Text to SQL":
st.subheader("Text to SQL Model")
question = st.text_area("Enter your question:")
tables_input = st.text_area("Enter table schemas (in JSON format):", '{"people_name": ["id", "name"], "people_age": ["people_id", "age"]}')
try:
tables = eval(tables_input) # Convert string to dict safely
except:
tables = {}
if st.button("Generate SQL Query"):
if question and tables:
sql_query = inference_sql(question, tables)
st.write(f"Generated SQL Query: {sql_query}")
else:
st.write("Please enter both a question and table schemas.")
# Input context for Question Generation model
elif model_choice == "Question Generation":
st.subheader("Question Generation Model")
context = st.text_area("Enter context:")
if st.button("Generate Question"):
if context:
generated_question = inference_question(context)
st.write(f"Generated Question: {generated_question}")
else:
st.write("Please enter context for question generation.")
if __name__ == "__main__":
main()