File size: 3,903 Bytes
a3d0e1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoModelForSeq2SeqLM, AutoTokenizer

# Load models and tokenizers
@st.cache_resource
def load_models():
    question_model_name = "mrm8488/t5-base-finetuned-question-generation-ap"
    recipe_model_name = "flax-community/t5-recipe-generation"
    instruct_model_name = "norallm/normistral-7b-warm-instruct"
    
    # Load question generation model and tokenizer
    question_model = T5ForConditionalGeneration.from_pretrained(question_model_name)
    question_tokenizer = T5Tokenizer.from_pretrained(question_model_name)
    
    # Load recipe generation model and tokenizer
    recipe_model = AutoModelForSeq2SeqLM.from_pretrained(recipe_model_name)
    recipe_tokenizer = AutoTokenizer.from_pretrained(recipe_model_name)
    
    # Load instruction-based model and tokenizer
    instruct_model = AutoModelForSeq2SeqLM.from_pretrained(instruct_model_name)
    instruct_tokenizer = AutoTokenizer.from_pretrained(instruct_model_name)
    
    return (question_model, question_tokenizer), (recipe_model, recipe_tokenizer), (instruct_model, instruct_tokenizer)

(question_model, question_tokenizer), (recipe_model, recipe_tokenizer), (instruct_model, instruct_tokenizer) = load_models()

# Function to generate a question from a given passage
def generate_question(text, model, tokenizer):
    input_text = f"generate question: {text}"
    input_ids = tokenizer.encode(input_text, return_tensors="pt")
    outputs = model.generate(input_ids)
    question = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return question

# Function to generate a recipe from ingredients or a title
def generate_recipe(prompt, model, tokenizer):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1)
    recipe = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return recipe

# Function to generate an instruction-based response
def generate_instruction(prompt, model, tokenizer):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(inputs["input_ids"], max_length=100, num_return_sequences=1)
    instruction = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return instruction

# Streamlit interface
st.title("Multi-Model Application: Question, Recipe & Instruction Generation")

# Select task
task = st.selectbox("Choose a task:", ["Generate Question", "Generate Recipe", "Instruction Generation"])

if task == "Generate Question":
    st.subheader("Generate a Question")
    passage = st.text_area("Enter a passage to generate a question:")
    if st.button("Generate Question"):
        if passage:
            question = generate_question(passage, question_model, question_tokenizer)
            st.write(f"Generated Question: {question}")
        else:
            st.write("Please enter a passage to generate a question.")

elif task == "Generate Recipe":
    st.subheader("Generate a Recipe")
    recipe_prompt = st.text_area("Enter ingredients or a recipe title:")
    if st.button("Generate Recipe"):
        if recipe_prompt:
            recipe = generate_recipe(recipe_prompt, recipe_model, recipe_tokenizer)
            st.write("Generated Recipe:")
            st.write(recipe)
        else:
            st.write("Please enter ingredients or a recipe title to generate a recipe.")

elif task == "Instruction Generation":
    st.subheader("Generate an Instruction")
    instruction_prompt = st.text_area("Enter an instruction prompt:")
    if st.button("Generate Instruction"):
        if instruction_prompt:
            instruction = generate_instruction(instruction_prompt, instruct_model, instruct_tokenizer)
            st.write("Generated Instruction:")
            st.write(instruction)
        else:
            st.write("Please enter an instruction prompt.")