Spaces:
Runtime error
Runtime error
File size: 7,814 Bytes
7a8bd09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
""" A Utility calss which contains most commonly used functions """
import huggingface_hub
import huggingface_hub.hf_api
import psutil
import torch
import functools
import socket
import cryptography
import cryptography.fernet
class Utility(object):
def __init__(self, name="Utility") -> None:
self.name = name
self.author = "Duc Haba, Girish"
self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
self._pp("Code name", self.name)
#Define encrypted keys
self._huggingface_key="gAAAAABkgtmOIjpnjwXFWmgh1j2et2kMjHUze-ym6h3BieAp34Sqkqv3EVYvRinETvpw-kXu7RSRl5_9FqrYe-7unfakMvMkU8nHrfB3hBSC76ZTXwkVSzlN0RfBNs9NL8BGjaSJ8mz8"
#Key for crypto
self._fkey="=cvsOPRcWD6JONmdr4Sh6-PqF6nT1InYh965mI8f_sef"
return
# Print : Pretty print output name-value line
def _pp(self, a, b,is_print=True):
# print("%34s : %s" % (str(a), str(b)))
x = f'{"%34s" % str(a)} : {str(b)}'
y = None
if (is_print):
print(x)
else:
y = x
return y
# Print : Pretty print the header or footer lines
def _ph(self,is_print=True):
x = f'{"-"*34} : {"-"*34}'
y = None
if (is_print):
print(x)
else:
y = x
return y
# Hugging face : Login to Hugging face
def _login_hface(self):
huggingface_hub.login(self._decrypt_it(self._huggingface_key),
add_to_git_credential=True) # non-blocking login
self._ph()
return
# Hugging face : Push files to Hugging face
def push_hface_files(self,
hf_names,
hf_space="GirishKiran/yml",
local_dir="/content/"):
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
try:
for f in hf_names:
lo = local_dir + f
huggingface_hub.upload_file(
path_or_fileobj=lo,
path_in_repo=f,
repo_id=hf_space,
repo_type=huggingface_hub.REPO_TYPE_SPACE)
except Exception as e:
self._pp("*Error", e)
return
# Hugging face : Push folders to Hugging face
def push_hface_folder(self, hf_folder, hf_space_id, hf_dest_folder=None):
api = huggingface_hub.HfApi()
api.upload_folder(folder_path=hf_folder,
repo_id=hf_space_id,
path_in_repo=hf_dest_folder,
repo_type="space")
return
# Hugging face : Login to Hugging face
def _login_hface(self):
huggingface_hub.login(self._decrypt_it(self._huggingface_key),
add_to_git_credential=True) # non-blocking login
self._ph()
return
# System Info : Fetch available CPU and RAM of the system
def fetch_system_info(self):
s=''
# Get CPU usage as a percentage
cpu_usage = psutil.cpu_percent()
# Get available memory in bytes
mem = psutil.virtual_memory()
# Convert bytes to gigabytes
mem_total_gb = mem.total / (1024 ** 3)
mem_available_gb = mem.available / (1024 ** 3)
mem_used_gb = mem.used / (1024 ** 3)
# Print the results
s += f"CPU usage: {cpu_usage}%\n"
s += f"Total memory: {mem_total_gb:.2f} GB\n"
s += f"Available memory: {mem_available_gb:.2f} GB\n"
# print(f"Used memory: {mem_used_gb:.2f} GB")
s += f"Memory usage: {mem_used_gb/mem_total_gb:.2f}%\n"
return
# System Info : Fetch GPU information of the system
def fetch_gpu_info(self):
s=''
try:
s += f'Your GPU is the {torch.cuda.get_device_name(0)}\n'
s += f'GPU ready staus {torch.cuda.is_available()}\n'
s += f'GPU allocated RAM: {round(torch.cuda.memory_allocated(0)/1024**3,1)} GB\n'
s += f'GPU reserved RAM {round(torch.cuda.memory_reserved(0)/1024**3,1)} GB\n'
except Exception as e:
s += f'**Warning, No GPU: {e}'
return s
# System Info : Fetch host ip address
def fetch_host_ip(self):
s=''
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
s += f"Hostname: {hostname}\n"
s += f"IP Address: {ip_address}\n"
return s
# Create and writes data to the file
def write_file(self,fname, txt):
f = open(fname, "w")
f.writelines("\n".join(txt))
f.close()
return
# Crypto : Fetch crypto key
def _fetch_crypt(self,is_generate=False):
s=self._fkey[::-1]
if (is_generate):
s=open(self._xkeyfile, "rb").read()
return s
# Crypto : Decrypt value
def _decrypt_it(self, x):
y = self._fetch_crypt()
f = cryptography.fernet.Fernet(y)
m = f.decrypt(x)
return m.decode()
# Crypto : Encrypt value
def _encrypt_it(self, x):
key = self._fetch_crypt()
p = x.encode()
f = cryptography.fernet.Fernet(key)
y = f.encrypt(p)
return y
# Add method to class
def add_method(cls):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
setattr(cls, func.__name__, wrapper)
return func # returning func means func can still be used normally
return decorator
""" This file contains multiple Python classes and responssible to provide Emotions based on the given user input
Currently it supports emotions like Anger, Joy, Optimism and Sadness"""
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import scipy
import scipy.special
import pandas
class SentimentAnalyser(object):
global utility
# initialize the object
def __init__(self, name="Sentiment",*args, **kwargs):
super(SentimentAnalyser, self).__init__(*args, **kwargs)
self.author = "Duc Haba, Girish"
self.name = name
utility = Utility(name="Calling From SentimentAnalyser")
self.utility = utility
utility._ph()
utility._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
utility._pp("Code name", self.name)
utility._pp("Author is" , self.author)
utility._ph()
print(utility.fetch_system_info())
utility._ph()
print(utility.fetch_gpu_info())
utility._ph()
print(utility.fetch_host_ip())
utility._ph()
self._init_model()
utility._login_hface()
return
# initalise the model
def _init_model(self):
modelLink = "bhadresh-savani/distilbert-base-uncased-emotion"
self.tokenizer = AutoTokenizer.from_pretrained(modelLink)
self.model = AutoModelForSequenceClassification.from_pretrained(modelLink)
return
sentiment = SentimentAnalyser(name="EmotionAnalyser")
@add_method(SentimentAnalyser)
def _predict_sentiment(p):
# Tokenize input
inputs = sentiment.tokenizer(p, return_tensors="pt")
# Pass inputs through model
outputs = sentiment.model(**inputs)
out_data = outputs[0][0]
scores = out_data.detach().numpy()
scores = scipy.special.softmax(scores)
sentiment_map = ['Sadness', 'Joy', 'Love', 'Anger', 'Fear' , "Surprise"]
df_out = pandas.DataFrame([scores], columns=sentiment_map)
return df_out
@add_method(SentimentAnalyser)
def draw_bar_plot(df_data, title='Sentiment Analysis', xlabel='p string', ylabel='Emotion Score'):
pic = df_data.plot.bar(color=['#e89096', '#747c0c', '#84c98c','#dc545c', '#a31a0e' , '#3fbfbf'],
title=title,
ylabel=ylabel,
xlabel=xlabel,
grid=True)
return pic
@add_method(SentimentAnalyser)
def predict_sentiment(p):
df_out = _predict_sentiment(p)
max_column = df_out.loc[0].idxmax()
max_value = df_out.loc[0].max()
title = f'Sentiment Analysis: {max_column}: {round(max_value*100,1)}%'
xlabel= f'Input: {p}'
pic = draw_bar_plot(df_out, title=title, xlabel=xlabel)
return pic.get_figure(), df_out.to_json()
import gradio
in_box = [gradio.Textbox(lines=1, label="Input request", placeholder="your message")]
out_box = [gradio.Plot(label="Sentiment Score:"),
gradio.Textbox(lines=4, label="Response Raw JSON Data:")]
gradio.Interface(fn=predict_sentiment,
inputs=in_box,
outputs=out_box).launch(debug=True)
|