Spaces:
Running
Running
from fastapi import FastAPI, Query | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
app = FastAPI() | |
# Load model and processor | |
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct" | |
# Check for Metal GPU support on macOS | |
device = "mps" if torch.backends.mps.is_available() else "cpu" | |
processor = AutoProcessor.from_pretrained( | |
checkpoint, | |
min_pixels=256 * 28 * 28, | |
max_pixels=1280 * 28 * 28 | |
) | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
checkpoint, | |
torch_dtype=torch.float16 if device == "mps" else torch.bfloat16, # Use float16 on Apple Metal | |
device_map={"": 0} if device == "mps" else "cpu", | |
attn_implementation="flash_attention_2", # If it supports Mac | |
) | |
# Function to load and resize images (reduces processing time) | |
def load_and_resize_image(image_url): | |
response = requests.get(image_url) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
image = image.resize((512, 512)) # Resize to 512x512 to speed up processing | |
return image | |
def read_root(): | |
return {"message": "API is live. Use the /predict endpoint."} | |
def predict(image_url: str = Query(...), prompt: str = Query(...)): | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant with vision abilities."}, | |
{"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]}, | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
# Process image | |
image_inputs = [load_and_resize_image(image_url)] | |
video_inputs = None | |
# Process inputs | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
truncation=True, # Ensures token limit | |
max_length=512, # Prevents excessive memory usage | |
return_tensors="pt", | |
).to(device) | |
# Generate response | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=64) # Reduced for faster inference | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_texts = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return {"response": output_texts[0]} | |