qwen25vl-ocr-api / main.py
GhAyoub's picture
[OCR API] Optimization pass.
b717804
raw
history blame
2.51 kB
from fastapi import FastAPI, Query
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import requests
from PIL import Image
from io import BytesIO
app = FastAPI()
# Load model and processor
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
# Check for Metal GPU support on macOS
device = "mps" if torch.backends.mps.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(
checkpoint,
min_pixels=256 * 28 * 28,
max_pixels=1280 * 28 * 28
)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
checkpoint,
torch_dtype=torch.float16 if device == "mps" else torch.bfloat16, # Use float16 on Apple Metal
device_map={"": 0} if device == "mps" else "cpu",
attn_implementation="flash_attention_2", # If it supports Mac
)
# Function to load and resize images (reduces processing time)
def load_and_resize_image(image_url):
response = requests.get(image_url)
image = Image.open(BytesIO(response.content)).convert("RGB")
image = image.resize((512, 512)) # Resize to 512x512 to speed up processing
return image
@app.get("/")
def read_root():
return {"message": "API is live. Use the /predict endpoint."}
@app.get("/predict")
def predict(image_url: str = Query(...), prompt: str = Query(...)):
messages = [
{"role": "system", "content": "You are a helpful assistant with vision abilities."},
{"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]},
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Process image
image_inputs = [load_and_resize_image(image_url)]
video_inputs = None
# Process inputs
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
truncation=True, # Ensures token limit
max_length=512, # Prevents excessive memory usage
return_tensors="pt",
).to(device)
# Generate response
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=64) # Reduced for faster inference
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return {"response": output_texts[0]}