Spaces:
Sleeping
Sleeping
File size: 2,191 Bytes
e0cbe47 9b5b26a c19d193 e0cbe47 8fe992b 9b5b26a 5df72d6 9b5b26a 3d1237b 9b5b26a e0cbe47 9b5b26a e0cbe47 8c01ffb e0cbe47 8c01ffb 6aae614 ae7a494 e0cbe47 8c01ffb 9b5b26a e0cbe47 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b e0cbe47 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
from smolagents import CodeAgent, tool, Tool,LiteLLMModel, OpenAIServerModel
from tools.final_answer import FinalAnswerTool
import requests
import pytz
import yaml
import pandas as pd
import os, json
from PIL import Image
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_g5_data() -> dict:
"""Returns G5 dataset in a dictionary format.
G5 dataset contains informations relating to the movements of ships in space and time, mostly between the mid-18th and mid-19th centuries
"""
df = pd.read_csv("g5data.csv", sep=";", encoding="utf-8")
return df.to_dict()
@tool
def save_figure()-> None:
"""Save the chart in a image.png file located at "/content/gdrive/MyDrive/ColabNotebooks/Portic" path
Returns the image displayed"""
image_path = '/content/gdrive/MyDrive/ColabNotebooks/Portic/image.png'
return Image.open(image_path)
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = LiteLLMModel(model_id="gemini/gemini-1.5-flash", api_key=os.environ["GOOGLE_API_KEY"])
# Import tool from Hub
#image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer,get_g5_data,save_figure], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |