Update app.py
Browse files
app.py
CHANGED
@@ -13,8 +13,9 @@ import os, stat, io
|
|
13 |
# Load the model in half-precision on the available device(s)
|
14 |
model = AutoModelForVision2Seq.from_pretrained(
|
15 |
"./SmolVLM-500M-Instruct",
|
16 |
-
torch_dtype=torch.
|
17 |
-
_attn_implementation="eager"
|
|
|
18 |
)
|
19 |
processor = AutoProcessor.from_pretrained("./SmolVLM-500M-Instruct")
|
20 |
|
@@ -51,7 +52,13 @@ def describe_image(image_array):
|
|
51 |
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
52 |
|
53 |
# Inference: Generation of the output
|
54 |
-
generated_ids = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
output_ids = [
|
56 |
generated_ids[len(input_ids) :]
|
57 |
for input_ids, generated_ids in zip(inputs.input_ids, generated_ids)
|
|
|
13 |
# Load the model in half-precision on the available device(s)
|
14 |
model = AutoModelForVision2Seq.from_pretrained(
|
15 |
"./SmolVLM-500M-Instruct",
|
16 |
+
torch_dtype=torch.float32,
|
17 |
+
#_attn_implementation="eager",
|
18 |
+
device_map="cpu"
|
19 |
)
|
20 |
processor = AutoProcessor.from_pretrained("./SmolVLM-500M-Instruct")
|
21 |
|
|
|
52 |
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
53 |
|
54 |
# Inference: Generation of the output
|
55 |
+
generated_ids = model.generate(
|
56 |
+
**inputs,
|
57 |
+
max_new_tokens=500,
|
58 |
+
num_beams=1, # Disable beam search
|
59 |
+
do_sample=False, # Disable sampling
|
60 |
+
temperature=1.0 # Set temperature to 1.0
|
61 |
+
)
|
62 |
output_ids = [
|
63 |
generated_ids[len(input_ids) :]
|
64 |
for input_ids, generated_ids in zip(inputs.input_ids, generated_ids)
|