GeorgiosIoannouCoder's picture
Update app.py
d5ba9de verified
#############################################################################################################################
# Filename : app.py
# Description: A Streamlit application to showcase the importance of Responsible AI in LLMs.
# Author : Georgios Ioannou
#
# Copyright © 2024 by Georgios Ioannou
#############################################################################################################################
# Import libraries.
import os
import requests
import streamlit as st
import streamlit.components.v1 as components
from dataclasses import dataclass
from dotenv import find_dotenv, load_dotenv
from huggingface_hub import InferenceClient
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationChain
from langchain.llms import OpenAI
from policies import complex_policy, simple_policy
from typing import Literal
#############################################################################################################################
# Load environment variable(s).
load_dotenv(find_dotenv())
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
#############################################################################################################################
@dataclass
class Message:
"""Class for keeping track of a chat message."""
origin: Literal["human", "ai"]
message: str
#############################################################################################################################
# Initialize Hugging Face clients.
def initialize_hf_clients():
client = InferenceClient(api_key=HUGGINGFACE_API_KEY)
gpt2_api_url = "https://api-inference.huggingface.co/models/openai-community/gpt2"
headers = {"Authorization": f"Bearer {HUGGINGFACE_API_KEY}"}
return client, gpt2_api_url, headers
#############################################################################################################################
# Hugging Face model inference functions.
def qwen_inference(prompt):
client, _, _ = initialize_hf_clients()
messages = [{"role": "user", "content": prompt}]
try:
response = client.chat.completions.create(
model="Qwen/Qwen2.5-1.5B-Instruct", messages=messages, max_tokens=500
)
return response.choices[0].message.content
except Exception as e:
return f"Error with Qwen inference: {str(e)}"
def gpt2_inference(prompt):
_, api_url, headers = initialize_hf_clients()
try:
response = requests.post(api_url, headers=headers, json={"inputs": prompt})
return response.json()[0]["generated_text"]
except Exception as e:
return f"Error with GPT-2 inference: {str(e)}"
#############################################################################################################################
# Initialize session state.
def initialize_session_state():
if "history" not in st.session_state:
st.session_state.history = []
if "token_count" not in st.session_state:
st.session_state.token_count = 0
if "policy" not in st.session_state:
st.session_state.policy = "No Policy"
if "selected_ai_icon" not in st.session_state:
st.session_state.selected_ai_icon = "a1.png"
if "selected_user_icon" not in st.session_state:
st.session_state.selected_user_icon = "man.png"
#############################################################################################################################
# Function to apply local CSS.
def local_css(file_name):
with open(file_name) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
#############################################################################################################################
def on_click_callback():
with get_openai_callback() as cb:
human_prompt = st.session_state.human_prompt
# Policy + User Query Text.
role = "User"
task = f"""
Task: Check if there is unsafe content in
'{role}' messages in conversations
according our safety policy with the below categories.
"""
output_format = f"""
Provide your safety assessment for '{role}' in the above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated categories.
"""
query = human_prompt
conversation = f"""
<BEGIN CONVERSATION>
User: {query}
<END CONVERSATION>
"""
if st.session_state.policy == "Simple Policy":
prompt = f"{task}\n{simple_policy}\n{conversation}\n{output_format}"
elif st.session_state.policy == "Complex Policy":
prompt = f"{task}\n{complex_policy}\n{conversation}\n{output_format}"
else:
prompt = human_prompt
# Safety check 1 - Input check.
if (
"gpt" in st.session_state.model.lower()
and "gpt2" not in st.session_state.model.lower()
):
llm_response_safety_check_1 = st.session_state.conversation.run(prompt)
st.session_state.token_count += cb.total_tokens
elif "qwen" in st.session_state.model.lower():
llm_response_safety_check_1 = qwen_inference(prompt)
st.session_state.token_count += cb.total_tokens
else: # gpt2.
llm_response_safety_check_1 = gpt2_inference(prompt)
st.session_state.token_count += cb.total_tokens
st.session_state.history.append(Message("human", human_prompt))
if "unsafe" in llm_response_safety_check_1.lower():
st.session_state.history.append(Message("ai", llm_response_safety_check_1))
return
# Get model response.
if (
"gpt" in st.session_state.model.lower()
and "gpt2" not in st.session_state.model.lower()
):
conversation_chain = ConversationChain(
llm=OpenAI(
temperature=0.2,
openai_api_key=OPENAI_API_KEY,
model_name=st.session_state.model,
)
)
llm_response = conversation_chain.run(human_prompt)
st.session_state.token_count += cb.total_tokens
elif "qwen" in st.session_state.model.lower():
llm_response = qwen_inference(human_prompt)
st.session_state.token_count += cb.total_tokens
else: # gpt2.
llm_response = gpt2_inference(human_prompt)
st.session_state.token_count += cb.total_tokens
# Safety check 2 - Output check.
query = llm_response
conversation = f"""
<BEGIN CONVERSATION>
User: {query}
<END CONVERSATION>
"""
if st.session_state.policy == "Simple Policy":
prompt = f"{task}\n{simple_policy}\n{conversation}\n{output_format}"
elif st.session_state.policy == "Complex Policy":
prompt = f"{task}\n{complex_policy}\n{conversation}\n{output_format}"
else:
prompt = llm_response
if (
"gpt" in st.session_state.model.lower()
and "gpt2" not in st.session_state.model.lower()
):
llm_response_safety_check_2 = st.session_state.conversation.run(prompt)
st.session_state.token_count += cb.total_tokens
elif "qwen" in st.session_state.model.lower():
llm_response_safety_check_2 = qwen_inference(prompt)
st.session_state.token_count += cb.total_tokens
else: # gpt2.
llm_response_safety_check_2 = gpt2_inference(prompt)
st.session_state.token_count += cb.total_tokens
if "unsafe" in llm_response_safety_check_2.lower():
st.session_state.history.append(
Message(
"ai",
"THIS FROM THE AUTHOR OF THE CODE: LLM WANTED TO RESPOND UNSAFELY!",
)
)
else:
st.session_state.history.append(Message("ai", llm_response))
#############################################################################################################################
def main():
initialize_session_state()
# Page title and favicon.
st.set_page_config(page_title="Responsible AI", page_icon="⚖️")
# Load CSS.
local_css("./static/styles/styles.css")
# Title.
title = f"""<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">
Responsible AI</h1>"""
st.markdown(title, unsafe_allow_html=True)
# Subtitle 1.
subtitle1 = f"""<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">
Showcase the importance of Responsible AI in LLMs Using Policies</h3>"""
st.markdown(subtitle1, unsafe_allow_html=True)
# Subtitle 2.
subtitle2 = f"""<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 0rem">
CUNY Tech Prep Tutorial 6</h2>"""
st.markdown(subtitle2, unsafe_allow_html=True)
# Image.
image = "./static/ctp.png"
left_co, cent_co, last_co = st.columns(3)
with cent_co:
st.image(image=image)
# Sidebar dropdown menu for Models.
models = [
"gpt-3.5-turbo",
"gpt-3.5-turbo-instruct",
"gpt-4-turbo",
"gpt-4",
"Qwen2.5-1.5B-Instruct",
"gpt2",
]
selected_model = st.sidebar.selectbox("Select Model:", models)
st.sidebar.markdown(
f"<span style='color: white;'>Current Model: {selected_model}</span>",
unsafe_allow_html=True,
)
st.session_state.model = selected_model
if "gpt" in selected_model.lower() and "gpt2" not in selected_model.lower():
st.session_state.conversation = ConversationChain(
llm=OpenAI(
temperature=0.2,
openai_api_key=OPENAI_API_KEY,
model_name=st.session_state.model,
),
)
# Sidebar dropdown menu for Policies.
policies = ["No Policy", "Complex Policy", "Simple Policy"]
selected_policy = st.sidebar.selectbox("Select Policy:", policies)
st.sidebar.markdown(
f"<span style='color: white;'>Current Policy: {selected_policy}</span>",
unsafe_allow_html=True,
)
st.session_state.policy = selected_policy
# Sidebar dropdown menu for AI Icons.
ai_icons = ["AI 1", "AI 2"]
selected_ai_icon = st.sidebar.selectbox("AI Icon:", ai_icons)
st.sidebar.markdown(
f"<span style='color: white;'>Current AI Icon: {selected_ai_icon}</span>",
unsafe_allow_html=True,
)
if selected_ai_icon == "AI 1":
st.session_state.selected_ai_icon = "ai1.png"
elif selected_ai_icon == "AI 2":
st.session_state.selected_ai_icon = "ai2.png"
# Sidebar dropdown menu for User Icons.
user_icons = ["Man", "Woman"]
selected_user_icon = st.sidebar.selectbox("User Icon:", user_icons)
st.sidebar.markdown(
f"<span style='color: white;'>Current User Icon: {selected_user_icon}</span>",
unsafe_allow_html=True,
)
if selected_user_icon == "Man":
st.session_state.selected_user_icon = "man.png"
elif selected_user_icon == "Woman":
st.session_state.selected_user_icon = "woman.png"
# Chat interface.
chat_placeholder = st.container()
prompt_placeholder = st.form("chat-form")
token_placeholder = st.empty()
with chat_placeholder:
for chat in st.session_state.history:
div = f"""
<div class="chat-row
{'' if chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="app/static/{
st.session_state.selected_ai_icon if chat.origin == 'ai'
else st.session_state.selected_user_icon}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
&#8203;{chat.message}
</div>
</div>
"""
st.markdown(div, unsafe_allow_html=True)
for _ in range(3):
st.markdown("")
# User prompt.
with prompt_placeholder:
st.markdown("**Chat**")
cols = st.columns((6, 1))
cols[0].text_input(
"Chat",
placeholder="What is your question?",
label_visibility="collapsed",
key="human_prompt",
)
cols[1].form_submit_button(
"Submit",
type="primary",
on_click=on_click_callback,
)
token_placeholder.caption(f"Used {st.session_state.token_count} tokens\n")
# GitHub repository link.
st.markdown(
f"""
<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;"><b> Check out our
<a href="https://github.com/GeorgiosIoannouCoder/" style="color: #FAF9F6;"> GitHub repository</a></b>
</p>
""",
unsafe_allow_html=True,
)
# Enter key handler.
components.html(
"""
<script>
const streamlitDoc = window.parent.document;
const buttons = Array.from(
streamlitDoc.querySelectorAll('.stButton > button')
);
const submitButton = buttons.find(
el => el.innerText === 'Submit'
);
streamlitDoc.addEventListener('keydown', function(e) {
switch (e.key) {
case 'Enter':
submitButton.click();
break;
}
});
</script>
""",
height=0,
width=0,
)
if __name__ == "__main__":
main()