Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	
		admin
		
	commited on
		
		
					Commit 
							
							·
						
						278c80b
	
1
								Parent(s):
							
							46493cf
								
sync
Browse files- .gitattributes +10 -11
- .gitignore +4 -0
- README.md +3 -3
- app.py +101 -0
- model.py +158 -0
- requirements.txt +4 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -1,35 +1,34 @@ | |
| 1 | 
             
            *.7z filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
             
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
             
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
| 4 | 
             
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
            -
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         | 
| 6 | 
             
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
             
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
             
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
             
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
             
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            -
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
             
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 13 | 
             
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
            -
            *.npy filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
            -
            *.npz filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
             
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 17 | 
             
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
             
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
             
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
| 20 | 
            -
            *.pickle filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
            -
            *.pkl filter=lfs diff=lfs merge=lfs -text
         | 
| 22 | 
             
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
             
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 24 | 
             
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
            -
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
             
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
             
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
| 28 | 
            -
            *.tar filter=lfs diff=lfs merge=lfs -text
         | 
| 29 | 
             
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 30 | 
             
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
| 31 | 
            -
            *.wasm filter=lfs diff=lfs merge=lfs -text
         | 
| 32 | 
             
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
            -
            *. | 
| 35 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            *.7z filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
             
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
             
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 4 | 
            +
            *.bin.* filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
             
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
| 6 | 
             
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
             
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
             
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
             
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
             
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
| 11 | 
             
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
             
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | |
| 13 | 
             
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
             
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
             
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
             
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | |
| 17 | 
             
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
             
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
             
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
| 20 | 
             
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
             
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
| 22 | 
             
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
             
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
| 24 | 
             
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
            +
            *.zstandard filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
            +
            *.tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 28 | 
            +
            *.db* filter=lfs diff=lfs merge=lfs -text
         | 
| 29 | 
            +
            *.ark* filter=lfs diff=lfs merge=lfs -text
         | 
| 30 | 
            +
            **/*ckpt*data* filter=lfs diff=lfs merge=lfs -text
         | 
| 31 | 
            +
            **/*ckpt*.meta filter=lfs diff=lfs merge=lfs -text
         | 
| 32 | 
            +
            **/*ckpt*.index filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
            +
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         | 
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            __pycache__/*
         | 
| 2 | 
            +
            *.pth
         | 
| 3 | 
            +
            flagged/*
         | 
| 4 | 
            +
            rename.sh
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,13 +1,13 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            title: SVHN Recognition
         | 
| 3 | 
            -
            emoji:  | 
| 4 | 
             
            colorFrom: yellow
         | 
| 5 | 
             
            colorTo: purple
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            -
            sdk_version: 4. | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
             
            license: mit
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            -
             | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            title: SVHN Recognition
         | 
| 3 | 
            +
            emoji: 🚪
         | 
| 4 | 
             
            colorFrom: yellow
         | 
| 5 | 
             
            colorTo: purple
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 4.36.0
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
             
            license: mit
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            +
            The Doorplate Recognition model is implemented using a deep convolutional neural network in PyTorch, with the objective of discerning multi-digit doorplate numbers from street view images. Utilizing the SVHN dataset extracted from Google Street View house numbers, the model is trained to identify sets of Arabic digits (0-9) within each image. The PyTorch implementation exhibits a commendable level of accuracy, achieving a tested precision of up to 89%. When users upload images containing doorplate numbers and submit them, the system yields precise recognition results for the digits present in the doorplate. This implementation provides a robust and user-friendly solution for doorplate number identification, demonstrating practical applications in the realm of image-based digit recognition.
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,101 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            import random
         | 
| 4 | 
            +
            import warnings
         | 
| 5 | 
            +
            import gradio as gr
         | 
| 6 | 
            +
            from PIL import Image
         | 
| 7 | 
            +
            from model import Model
         | 
| 8 | 
            +
            from torchvision import transforms
         | 
| 9 | 
            +
            from modelscope import snapshot_download
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            MODEL_DIR = snapshot_download("MuGeminorum/svhn", cache_dir="./__pycache__")
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            def infer(input_img: str, checkpoint_file: str):
         | 
| 16 | 
            +
                try:
         | 
| 17 | 
            +
                    model = Model()
         | 
| 18 | 
            +
                    model.restore(f"{MODEL_DIR}/{checkpoint_file}")
         | 
| 19 | 
            +
                    outstr = ""
         | 
| 20 | 
            +
                    with torch.no_grad():
         | 
| 21 | 
            +
                        transform = transforms.Compose(
         | 
| 22 | 
            +
                            [
         | 
| 23 | 
            +
                                transforms.Resize([64, 64]),
         | 
| 24 | 
            +
                                transforms.CenterCrop([54, 54]),
         | 
| 25 | 
            +
                                transforms.ToTensor(),
         | 
| 26 | 
            +
                                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
         | 
| 27 | 
            +
                            ]
         | 
| 28 | 
            +
                        )
         | 
| 29 | 
            +
                        image = Image.open(input_img)
         | 
| 30 | 
            +
                        image = image.convert("RGB")
         | 
| 31 | 
            +
                        image = transform(image)
         | 
| 32 | 
            +
                        images = image.unsqueeze(dim=0)
         | 
| 33 | 
            +
                        (
         | 
| 34 | 
            +
                            length_logits,
         | 
| 35 | 
            +
                            digit1_logits,
         | 
| 36 | 
            +
                            digit2_logits,
         | 
| 37 | 
            +
                            digit3_logits,
         | 
| 38 | 
            +
                            digit4_logits,
         | 
| 39 | 
            +
                            digit5_logits,
         | 
| 40 | 
            +
                        ) = model.eval()(images)
         | 
| 41 | 
            +
                        length_prediction = length_logits.max(1)[1]
         | 
| 42 | 
            +
                        digit1_prediction = digit1_logits.max(1)[1]
         | 
| 43 | 
            +
                        digit2_prediction = digit2_logits.max(1)[1]
         | 
| 44 | 
            +
                        digit3_prediction = digit3_logits.max(1)[1]
         | 
| 45 | 
            +
                        digit4_prediction = digit4_logits.max(1)[1]
         | 
| 46 | 
            +
                        digit5_prediction = digit5_logits.max(1)[1]
         | 
| 47 | 
            +
                        output = [
         | 
| 48 | 
            +
                            digit1_prediction.item(),
         | 
| 49 | 
            +
                            digit2_prediction.item(),
         | 
| 50 | 
            +
                            digit3_prediction.item(),
         | 
| 51 | 
            +
                            digit4_prediction.item(),
         | 
| 52 | 
            +
                            digit5_prediction.item(),
         | 
| 53 | 
            +
                        ]
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                        for i in range(length_prediction.item()):
         | 
| 56 | 
            +
                            outstr += str(output[i])
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                    return outstr
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                except Exception as e:
         | 
| 61 | 
            +
                    return f"{e}"
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
            def get_files(dir_path=MODEL_DIR, ext=".pth"):
         | 
| 65 | 
            +
                files_and_folders = os.listdir(dir_path)
         | 
| 66 | 
            +
                outputs = []
         | 
| 67 | 
            +
                for file in files_and_folders:
         | 
| 68 | 
            +
                    if file.endswith(ext):
         | 
| 69 | 
            +
                        outputs.append(file)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                return outputs
         | 
| 72 | 
            +
             | 
| 73 | 
            +
             | 
| 74 | 
            +
            if __name__ == "__main__":
         | 
| 75 | 
            +
                warnings.filterwarnings("ignore")
         | 
| 76 | 
            +
                models = get_files()
         | 
| 77 | 
            +
                images = get_files(f"{MODEL_DIR}/examples", ".png")
         | 
| 78 | 
            +
                samples = []
         | 
| 79 | 
            +
                for img in images:
         | 
| 80 | 
            +
                    samples.append(
         | 
| 81 | 
            +
                        [
         | 
| 82 | 
            +
                            f"{MODEL_DIR}/examples/{img}",
         | 
| 83 | 
            +
                            models[random.randint(0, len(models) - 1)],
         | 
| 84 | 
            +
                        ]
         | 
| 85 | 
            +
                    )
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                gr.Interface(
         | 
| 88 | 
            +
                    fn=infer,
         | 
| 89 | 
            +
                    inputs=[
         | 
| 90 | 
            +
                        gr.Image(label="上传图片 Upload an image", type="filepath"),
         | 
| 91 | 
            +
                        gr.Dropdown(
         | 
| 92 | 
            +
                            label="选择权重 Select a model",
         | 
| 93 | 
            +
                            choices=models,
         | 
| 94 | 
            +
                            value=models[0],
         | 
| 95 | 
            +
                        ),
         | 
| 96 | 
            +
                    ],
         | 
| 97 | 
            +
                    outputs=gr.Textbox(label="识别结果 Recognition result", show_copy_button=True),
         | 
| 98 | 
            +
                    examples=samples,
         | 
| 99 | 
            +
                    allow_flagging="never",
         | 
| 100 | 
            +
                    cache_examples=False,
         | 
| 101 | 
            +
                ).launch()
         | 
    	
        model.py
    ADDED
    
    | @@ -0,0 +1,158 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import glob
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import torch.jit
         | 
| 5 | 
            +
            import torch.nn as nn
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            class Model(torch.jit.ScriptModule):
         | 
| 9 | 
            +
                CHECKPOINT_FILENAME_PATTERN = "model-{}.pth"
         | 
| 10 | 
            +
             | 
| 11 | 
            +
                __constants__ = [
         | 
| 12 | 
            +
                    "_hidden1",
         | 
| 13 | 
            +
                    "_hidden2",
         | 
| 14 | 
            +
                    "_hidden3",
         | 
| 15 | 
            +
                    "_hidden4",
         | 
| 16 | 
            +
                    "_hidden5",
         | 
| 17 | 
            +
                    "_hidden6",
         | 
| 18 | 
            +
                    "_hidden7",
         | 
| 19 | 
            +
                    "_hidden8",
         | 
| 20 | 
            +
                    "_hidden9",
         | 
| 21 | 
            +
                    "_hidden10",
         | 
| 22 | 
            +
                    "_features",
         | 
| 23 | 
            +
                    "_classifier",
         | 
| 24 | 
            +
                    "_digit_length",
         | 
| 25 | 
            +
                    "_digit1",
         | 
| 26 | 
            +
                    "_digit2",
         | 
| 27 | 
            +
                    "_digit3",
         | 
| 28 | 
            +
                    "_digit4",
         | 
| 29 | 
            +
                    "_digit5",
         | 
| 30 | 
            +
                ]
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                def __init__(self):
         | 
| 33 | 
            +
                    super(Model, self).__init__()
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                    self._hidden1 = nn.Sequential(
         | 
| 36 | 
            +
                        nn.Conv2d(in_channels=3, out_channels=48, kernel_size=5, padding=2),
         | 
| 37 | 
            +
                        nn.BatchNorm2d(num_features=48),
         | 
| 38 | 
            +
                        nn.ReLU(),
         | 
| 39 | 
            +
                        nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
         | 
| 40 | 
            +
                        nn.Dropout(0.2),
         | 
| 41 | 
            +
                    )
         | 
| 42 | 
            +
                    self._hidden2 = nn.Sequential(
         | 
| 43 | 
            +
                        nn.Conv2d(in_channels=48, out_channels=64, kernel_size=5, padding=2),
         | 
| 44 | 
            +
                        nn.BatchNorm2d(num_features=64),
         | 
| 45 | 
            +
                        nn.ReLU(),
         | 
| 46 | 
            +
                        nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
         | 
| 47 | 
            +
                        nn.Dropout(0.2),
         | 
| 48 | 
            +
                    )
         | 
| 49 | 
            +
                    self._hidden3 = nn.Sequential(
         | 
| 50 | 
            +
                        nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2),
         | 
| 51 | 
            +
                        nn.BatchNorm2d(num_features=128),
         | 
| 52 | 
            +
                        nn.ReLU(),
         | 
| 53 | 
            +
                        nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
         | 
| 54 | 
            +
                        nn.Dropout(0.2),
         | 
| 55 | 
            +
                    )
         | 
| 56 | 
            +
                    self._hidden4 = nn.Sequential(
         | 
| 57 | 
            +
                        nn.Conv2d(in_channels=128, out_channels=160, kernel_size=5, padding=2),
         | 
| 58 | 
            +
                        nn.BatchNorm2d(num_features=160),
         | 
| 59 | 
            +
                        nn.ReLU(),
         | 
| 60 | 
            +
                        nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
         | 
| 61 | 
            +
                        nn.Dropout(0.2),
         | 
| 62 | 
            +
                    )
         | 
| 63 | 
            +
                    self._hidden5 = nn.Sequential(
         | 
| 64 | 
            +
                        nn.Conv2d(in_channels=160, out_channels=192, kernel_size=5, padding=2),
         | 
| 65 | 
            +
                        nn.BatchNorm2d(num_features=192),
         | 
| 66 | 
            +
                        nn.ReLU(),
         | 
| 67 | 
            +
                        nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
         | 
| 68 | 
            +
                        nn.Dropout(0.2),
         | 
| 69 | 
            +
                    )
         | 
| 70 | 
            +
                    self._hidden6 = nn.Sequential(
         | 
| 71 | 
            +
                        nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
         | 
| 72 | 
            +
                        nn.BatchNorm2d(num_features=192),
         | 
| 73 | 
            +
                        nn.ReLU(),
         | 
| 74 | 
            +
                        nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
         | 
| 75 | 
            +
                        nn.Dropout(0.2),
         | 
| 76 | 
            +
                    )
         | 
| 77 | 
            +
                    self._hidden7 = nn.Sequential(
         | 
| 78 | 
            +
                        nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
         | 
| 79 | 
            +
                        nn.BatchNorm2d(num_features=192),
         | 
| 80 | 
            +
                        nn.ReLU(),
         | 
| 81 | 
            +
                        nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
         | 
| 82 | 
            +
                        nn.Dropout(0.2),
         | 
| 83 | 
            +
                    )
         | 
| 84 | 
            +
                    self._hidden8 = nn.Sequential(
         | 
| 85 | 
            +
                        nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
         | 
| 86 | 
            +
                        nn.BatchNorm2d(num_features=192),
         | 
| 87 | 
            +
                        nn.ReLU(),
         | 
| 88 | 
            +
                        nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
         | 
| 89 | 
            +
                        nn.Dropout(0.2),
         | 
| 90 | 
            +
                    )
         | 
| 91 | 
            +
                    self._hidden9 = nn.Sequential(nn.Linear(192 * 7 * 7, 3072), nn.ReLU())
         | 
| 92 | 
            +
                    self._hidden10 = nn.Sequential(nn.Linear(3072, 3072), nn.ReLU())
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    self._digit_length = nn.Sequential(nn.Linear(3072, 7))
         | 
| 95 | 
            +
                    self._digit1 = nn.Sequential(nn.Linear(3072, 11))
         | 
| 96 | 
            +
                    self._digit2 = nn.Sequential(nn.Linear(3072, 11))
         | 
| 97 | 
            +
                    self._digit3 = nn.Sequential(nn.Linear(3072, 11))
         | 
| 98 | 
            +
                    self._digit4 = nn.Sequential(nn.Linear(3072, 11))
         | 
| 99 | 
            +
                    self._digit5 = nn.Sequential(nn.Linear(3072, 11))
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                @torch.jit.script_method
         | 
| 102 | 
            +
                def forward(self, x):
         | 
| 103 | 
            +
                    x = self._hidden1(x)
         | 
| 104 | 
            +
                    x = self._hidden2(x)
         | 
| 105 | 
            +
                    x = self._hidden3(x)
         | 
| 106 | 
            +
                    x = self._hidden4(x)
         | 
| 107 | 
            +
                    x = self._hidden5(x)
         | 
| 108 | 
            +
                    x = self._hidden6(x)
         | 
| 109 | 
            +
                    x = self._hidden7(x)
         | 
| 110 | 
            +
                    x = self._hidden8(x)
         | 
| 111 | 
            +
                    x = x.view(x.size(0), 192 * 7 * 7)
         | 
| 112 | 
            +
                    x = self._hidden9(x)
         | 
| 113 | 
            +
                    x = self._hidden10(x)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    length_logits = self._digit_length(x)
         | 
| 116 | 
            +
                    digit1_logits = self._digit1(x)
         | 
| 117 | 
            +
                    digit2_logits = self._digit2(x)
         | 
| 118 | 
            +
                    digit3_logits = self._digit3(x)
         | 
| 119 | 
            +
                    digit4_logits = self._digit4(x)
         | 
| 120 | 
            +
                    digit5_logits = self._digit5(x)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    return (
         | 
| 123 | 
            +
                        length_logits,
         | 
| 124 | 
            +
                        digit1_logits,
         | 
| 125 | 
            +
                        digit2_logits,
         | 
| 126 | 
            +
                        digit3_logits,
         | 
| 127 | 
            +
                        digit4_logits,
         | 
| 128 | 
            +
                        digit5_logits,
         | 
| 129 | 
            +
                    )
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                def store(self, path_to_dir, step, maximum=5):
         | 
| 132 | 
            +
                    path_to_models = glob.glob(
         | 
| 133 | 
            +
                        os.path.join(path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format("*"))
         | 
| 134 | 
            +
                    )
         | 
| 135 | 
            +
                    if len(path_to_models) == maximum:
         | 
| 136 | 
            +
                        min_step = min(
         | 
| 137 | 
            +
                            [
         | 
| 138 | 
            +
                                int(path_to_model.split("\\")[-1][6:-4])
         | 
| 139 | 
            +
                                for path_to_model in path_to_models
         | 
| 140 | 
            +
                            ]
         | 
| 141 | 
            +
                        )
         | 
| 142 | 
            +
                        path_to_min_step_model = os.path.join(
         | 
| 143 | 
            +
                            path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format(min_step)
         | 
| 144 | 
            +
                        )
         | 
| 145 | 
            +
                        os.remove(path_to_min_step_model)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    path_to_checkpoint_file = os.path.join(
         | 
| 148 | 
            +
                        path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format(step)
         | 
| 149 | 
            +
                    )
         | 
| 150 | 
            +
                    torch.save(self.state_dict(), path_to_checkpoint_file)
         | 
| 151 | 
            +
                    return path_to_checkpoint_file
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                def restore(self, path_to_checkpoint_file):
         | 
| 154 | 
            +
                    self.load_state_dict(
         | 
| 155 | 
            +
                        torch.load(path_to_checkpoint_file, map_location=torch.device("cpu"))
         | 
| 156 | 
            +
                    )
         | 
| 157 | 
            +
                    step = int(path_to_checkpoint_file.split("model-")[-1][:-4])
         | 
| 158 | 
            +
                    return step
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            gradio
         | 
| 2 | 
            +
            pillow
         | 
| 3 | 
            +
            torch
         | 
| 4 | 
            +
            torchvision
         | 
