import numpy as np from .boxes_utils import assert_and_normalize_shape def translate_boxes(boxes, x_shift=0, y_shift=0, copy=True): """translate boxes coordinates in x and y dimensions. Args: boxes: (N, 4+K) x_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) shift in x dimension y_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) shift in y dimension copy: bool References: `datasets.pipelines.RandomCrop` in mmdetection """ boxes = np.array(boxes, dtype=np.float32, copy=copy) x_shift = np.asarray(x_shift, np.float32) y_shift = np.asarray(y_shift, np.float32) x_shift = assert_and_normalize_shape(x_shift, boxes.shape[0]) y_shift = assert_and_normalize_shape(y_shift, boxes.shape[0]) boxes[:, 0] += x_shift boxes[:, 1] += y_shift boxes[:, 2] += x_shift boxes[:, 3] += y_shift return boxes def adjust_boxes(boxes, x_min_shift, y_min_shift, x_max_shift, y_max_shift, copy=True): """ Args: boxes: (N, 4+K) x_min_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) shift (x_min, y_min) in x dimension y_min_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) shift (x_min, y_min) in y dimension x_max_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) shift (x_max, y_max) in x dimension y_max_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) shift (x_max, y_max) in y dimension copy: bool """ boxes = np.array(boxes, dtype=np.float32, copy=copy) x_min_shift = np.asarray(x_min_shift, np.float32) y_min_shift = np.asarray(y_min_shift, np.float32) x_max_shift = np.asarray(x_max_shift, np.float32) y_max_shift = np.asarray(y_max_shift, np.float32) x_min_shift = assert_and_normalize_shape(x_min_shift, boxes.shape[0]) y_min_shift = assert_and_normalize_shape(y_min_shift, boxes.shape[0]) x_max_shift = assert_and_normalize_shape(x_max_shift, boxes.shape[0]) y_max_shift = assert_and_normalize_shape(y_max_shift, boxes.shape[0]) boxes[:, 0] += x_min_shift boxes[:, 1] += y_min_shift boxes[:, 2] += x_max_shift boxes[:, 3] += y_max_shift return boxes def inflate_or_deflate_boxes(boxes, width_delta=0, height_delta=0, copy=True): """ Args: boxes: (N, 4+K) width_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) height_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) copy: bool """ boxes = np.array(boxes, dtype=np.float32, copy=copy) width_delta = np.asarray(width_delta, np.float32) height_delta = np.asarray(height_delta, np.float32) width_delta = assert_and_normalize_shape(width_delta, boxes.shape[0]) height_delta = assert_and_normalize_shape(height_delta, boxes.shape[0]) half_width_delta = width_delta * 0.5 half_height_delta = height_delta * 0.5 boxes[:, 0] -= half_width_delta boxes[:, 1] -= half_height_delta boxes[:, 2] += half_width_delta boxes[:, 3] += half_height_delta return boxes def inflate_boxes_to_square(boxes, copy=True): """Inflate boxes to square Args: boxes: (N, 4+K) copy: bool """ boxes = np.array(boxes, dtype=np.float32, copy=copy) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] max_side_lengths = np.maximum(widths, heights) width_deltas = np.subtract(max_side_lengths, widths, widths) height_deltas = np.subtract(max_side_lengths, heights, heights) width_deltas *= 0.5 height_deltas *= 0.5 boxes[:, 0] -= width_deltas boxes[:, 1] -= height_deltas boxes[:, 2] += width_deltas boxes[:, 3] += height_deltas return boxes def deflate_boxes_to_square(boxes, copy=True): """Deflate boxes to square Args: boxes: (N, 4+K) copy: bool """ boxes = np.array(boxes, dtype=np.float32, copy=copy) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] min_side_lengths = np.minimum(widths, heights) width_deltas = np.subtract(min_side_lengths, widths, widths) height_deltas = np.subtract(min_side_lengths, heights, heights) width_deltas *= 0.5 height_deltas *= 0.5 boxes[:, 0] -= width_deltas boxes[:, 1] -= height_deltas boxes[:, 2] += width_deltas boxes[:, 3] += height_deltas return boxes