File size: 4,933 Bytes
cc646d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import gradio as gr
from sympy.core.numbers import Rational
from solution import BadInput, solutions


def generate_md(args_dict, name):
    try:
        ans_latex = solutions[name](**args_dict).get_latex_ans()

    except BadInput as e:
        return f"输入错误, 请输入有效的数字: {e}"

    return f"注意到 $${ans_latex}$$ 证毕!"


def float_to_fraction(x):
    x_str = "{0:.10f}".format(x).rstrip("0").rstrip(".")  # 移除小数点后的无效零

    # 检查是否为整数
    if "." not in x_str:
        return Rational(x_str), Rational(1)

    # 分割整数部分和小数部分
    integer_part, decimal_part = x_str.split(".")
    decimal_digits = len(decimal_part)

    # 构造分子和分母
    numerator = int(integer_part + decimal_part)
    denominator = 10**decimal_digits

    # 简化分数
    gcd_value = 1
    a = numerator
    b = denominator
    while b != 0:
        a, b = b, a % b
        gcd_value = a

    p = Rational(numerator // gcd_value)
    q = Rational(denominator // gcd_value)
    return p, q


def infer_pi(p, q):
    if q == 0:
        return "分母不能为 0 !"

    p, q = float_to_fraction(p / q)
    args_dict = {"p": p, "q": q}
    return generate_md(args_dict, "π")


def infer_e(p, q):
    if q == 0:
        return "分母不能为 0 !"

    p, q = float_to_fraction(p / q)
    args_dict = {"p": p, "q": q}
    return generate_md(args_dict, "e")


def infer_eq(q1, q2, u, v):
    if q2 == 0 or v == 0:
        return "分母不能为 0 !"

    q1, q2 = float_to_fraction(q1 / q2)
    u, v = float_to_fraction(u / v)
    args_dict = {"q1": q1, "q2": q2, "u": u, "v": v}
    return generate_md(args_dict, "e^q")


def infer_pin(n: int, p, q):
    if q == 0:
        return "分母不能为 0 !"

    p, q = float_to_fraction(p / q)
    args_dict = {"n": n, "p": p, "q": q}
    return generate_md(args_dict, "π^n")


if __name__ == "__main__":
    os.chdir(os.path.dirname(__file__))
    for file_name in os.listdir("solutions"):
        if not file_name.endswith(".py"):
            continue

        __import__(f"solutions.{file_name[:-3]}")

    with gr.Blocks() as demo:
        gr.Markdown("# “注意到”证明法比较大小")
        with gr.Tabs():
            with gr.TabItem("π"):
                gr.Interface(
                    fn=infer_pi,
                    inputs=[
                        gr.Number(label="p", value=314),
                        gr.Number(label="q", value=100),
                    ],
                    outputs=gr.Markdown(
                        value="#### 证明结果",
                        show_copy_button=True,
                        container=True,
                        min_height=122,
                    ),
                    title="比较 π 与 p/q 大小",
                    allow_flagging="never",
                )

            with gr.TabItem("e"):
                gr.Interface(
                    fn=infer_e,
                    inputs=[
                        gr.Number(label="p", value=2718),
                        gr.Number(label="q", value=1000),
                    ],
                    outputs=gr.Markdown(
                        value="#### 证明结果",
                        show_copy_button=True,
                        container=True,
                        min_height=122,
                    ),
                    title="比较 e 与 p/q 大小",
                    allow_flagging="never",
                )

            with gr.TabItem("e^q"):
                gr.Interface(
                    fn=infer_eq,
                    inputs=[
                        gr.Number(label="p", value=3),
                        gr.Number(label="q", value=4),
                        gr.Number(label="u", value=2117),
                        gr.Number(label="v", value=1000),
                    ],
                    outputs=gr.Markdown(
                        value="#### 证明结果",
                        show_copy_button=True,
                        container=True,
                        min_height=122,
                    ),
                    title="比较 e^(p/q) 与 u/v 大小",
                    allow_flagging="never",
                )

            with gr.TabItem("π^n"):
                gr.Interface(
                    fn=infer_pin,
                    inputs=[
                        gr.Number(label="n", value=3, step=1),
                        gr.Number(label="p", value=31),
                        gr.Number(label="q", value=1),
                    ],
                    outputs=gr.Markdown(
                        value="#### 证明结果",
                        show_copy_button=True,
                        container=True,
                        min_height=122,
                    ),
                    title="比较 π^n 与 p/q 大小",
                    allow_flagging="never",
                )

    demo.launch()