import gradio as gr from PIL import Image, ImageDraw, ImageFont import scipy.io.wavfile as wavfile from transformers import pipeline narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") def generate_audio(text): narrated_text = narrator(text) wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) return "output.wav" def read_objects(detection_objects): object_counts = {} for detection in detection_objects: label = detection['label'] if label in object_counts: object_counts[label] += 1 else: object_counts[label] = 1 response = "This picture contains" labels = list(object_counts.keys()) for i, label in enumerate(labels): response += f" {object_counts[label]} {label}" if object_counts[label] > 1: response += "s" if i < len(labels) - 2: response += "," elif i == len(labels) - 2: response += " and" response += "." return response def draw_bounding_boxes(image, detections, font_path=None, font_size=20): """ Draws bounding boxes on the given image based on the detections. :param image: PIL.Image object :param detections: List of detection results, where each result is a dictionary containing 'score', 'label', and 'box' keys. 'box' itself is a dictionary with 'xmin', 'ymin', 'xmax', 'ymax'. :param font_path: Path to the TrueType font file to use for text. :param font_size: Size of the font to use for text. :return: PIL.Image object with bounding boxes drawn. """ draw_image = image.copy() draw = ImageDraw.Draw(draw_image) if font_path: font = ImageFont.truetype(font_path, font_size) else: font = ImageFont.load_default() for detection in detections: box = detection['box'] xmin = box['xmin'] ymin = box['ymin'] xmax = box['xmax'] ymax = box['ymax'] draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3) label = detection['label'] score = detection['score'] text = f"{label} {score:.2f}" if font_path: text_size = draw.textbbox((xmin, ymin), text, font=font) else: text_size = draw.textbbox((xmin, ymin), text) draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red") draw.text((xmin, ymin), text, fill="white", font=font) return draw_image def detect_object(image): raw_image = image output = object_detector(raw_image) processed_image = draw_bounding_boxes(raw_image, output) natural_text = read_objects(output) processed_audio = generate_audio(natural_text) return processed_image, processed_audio demo = gr.Interface(fn=detect_object, inputs=[gr.Image(label="Select Image",type="pil")], outputs=[gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio")], title="@GenAILearniverse Project 7: Object Detector with Audio", description="THIS APPLICATION WILL BE USED TO HIGHLIGHT OBJECTS AND GIVES AUDIO DESCRIPTION FOR THE PROVIDED INPUT IMAGE.") demo.launch() # print(output)