GenAICoder commited on
Commit
bde82a9
·
verified ·
1 Parent(s): 4757e3a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -15,12 +15,11 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
15
  #from transformers import pipeline
16
  # Load model directly
17
  #from transformers import AutoModelForCausalLM
18
- from getpass import getpass
 
19
 
20
- HUGGINGFACEHUB_API_TOKEN = getpass()
21
 
22
 
23
- os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
24
  #access_token = os.getenv("HUGGINGFACE_API_KEY")
25
 
26
 
@@ -92,12 +91,16 @@ def get_conversational_chain(retriever):
92
  #repo_id='meta-llama/Meta-Llama-3-70B'
93
  #repo_id = 'mistralai/Mixtral-8x7B-Instruct-v0.1'
94
  #repo_id= 'nvidia/Llama3-ChatQA-1.5-8B'
95
- repo_id= 'google/gemma-1.1-2b-it'
96
- llm = HuggingFaceEndpoint(repo_id=repo_id, temperature=0.3,token = HUGGINGFACEHUB_API_TOKEN)
97
  #tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it")
98
  #llm = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-2b-it")
99
  #llm = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True, token=access_token)
100
  #llm = pipeline("text-generation", model="google/gemma-1.1-2b-it")
 
 
 
 
101
 
102
  pt = ChatPromptTemplate.from_template(prompt_template)
103
  # Retrieve and generate using the relevant snippets of the blog.
 
15
  #from transformers import pipeline
16
  # Load model directly
17
  #from transformers import AutoModelForCausalLM
18
+ from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
19
+
20
 
 
21
 
22
 
 
23
  #access_token = os.getenv("HUGGINGFACE_API_KEY")
24
 
25
 
 
91
  #repo_id='meta-llama/Meta-Llama-3-70B'
92
  #repo_id = 'mistralai/Mixtral-8x7B-Instruct-v0.1'
93
  #repo_id= 'nvidia/Llama3-ChatQA-1.5-8B'
94
+ #repo_id= 'google/gemma-1.1-2b-it'
95
+ #llm = HuggingFaceEndpoint(repo_id=repo_id, temperature=0.3,token = HUGGINGFACEHUB_API_TOKEN)
96
  #tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it")
97
  #llm = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-2b-it")
98
  #llm = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True, token=access_token)
99
  #llm = pipeline("text-generation", model="google/gemma-1.1-2b-it")
100
+ llm = HuggingFacePipeline.from_model_id(
101
+ model_id="Phi-3-mini-128k-instruct",
102
+ task="text-generation",
103
+ pipeline_kwargs={"max_new_tokens": 10})
104
 
105
  pt = ChatPromptTemplate.from_template(prompt_template)
106
  # Retrieve and generate using the relevant snippets of the blog.