Spaces:
Running
Running
Chandranshu Jain
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
2 |
from PyPDF2 import PdfReader
|
3 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
4 |
import os
|
5 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
from langchain.chains.question_answering import load_qa_chain
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
from langchain_community.document_loaders import PyPDFLoader
|
11 |
from langchain_chroma import Chroma
|
12 |
-
import
|
13 |
-
from langchain_cohere import CohereEmbeddings
|
14 |
|
15 |
#st.set_page_config(page_title="Document Genie", layout="wide")
|
16 |
|
@@ -33,19 +35,13 @@ from langchain_cohere import CohereEmbeddings
|
|
33 |
# docs = loader.load()
|
34 |
# return docs
|
35 |
|
36 |
-
def
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
file.write(uploaded_file.getvalue())
|
44 |
-
file_name = uploaded_file.name
|
45 |
-
loader = PyPDFLoader(temp_file)
|
46 |
-
docs = loader.load()
|
47 |
-
return docs
|
48 |
-
|
49 |
def text_splitter(text):
|
50 |
text_splitter = RecursiveCharacterTextSplitter(
|
51 |
# Set a really small chunk size, just to show.
|
@@ -55,8 +51,8 @@ def text_splitter(text):
|
|
55 |
chunks=text_splitter.split_documents(text)
|
56 |
return chunks
|
57 |
|
58 |
-
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
59 |
-
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
60 |
|
61 |
def get_conversational_chain():
|
62 |
prompt_template = """
|
@@ -79,7 +75,8 @@ def get_conversational_chain():
|
|
79 |
|
80 |
def embedding(chunk,query):
|
81 |
#embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
82 |
-
embeddings = CohereEmbeddings(model="embed-english-v3.0")
|
|
|
83 |
db = Chroma.from_documents(chunk,embeddings)
|
84 |
doc = db.similarity_search(query)
|
85 |
print(doc)
|
@@ -96,11 +93,12 @@ if 'messages' not in st.session_state:
|
|
96 |
st.header("Chat with your pdf💁")
|
97 |
with st.sidebar:
|
98 |
st.title("PDF FILE UPLOAD:")
|
99 |
-
pdf_docs = st.file_uploader("Upload your PDF File and Click on the Submit & Process Button", accept_multiple_files=
|
100 |
|
101 |
query = st.chat_input("Ask a Question from the PDF File")
|
102 |
if query:
|
103 |
-
|
|
|
104 |
text_chunks = text_splitter(raw_text)
|
105 |
st.session_state.messages.append({'role': 'user', "content": query})
|
106 |
response = embedding(text_chunks,query)
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain_core.runnables import RunnablePassthrough
|
5 |
+
from langchain_core.output_parsers import StrOutputParser
|
6 |
+
from langchain.prompts import ChatPromptTemplate
|
7 |
from PyPDF2 import PdfReader
|
8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
import os
|
|
|
10 |
from langchain_community.vectorstores import Chroma
|
|
|
11 |
from langchain.chains.question_answering import load_qa_chain
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
from langchain_community.document_loaders import PyPDFLoader
|
14 |
from langchain_chroma import Chroma
|
15 |
+
from langchain_community.vectorstores import Chroma
|
|
|
16 |
|
17 |
#st.set_page_config(page_title="Document Genie", layout="wide")
|
18 |
|
|
|
35 |
# docs = loader.load()
|
36 |
# return docs
|
37 |
|
38 |
+
def get_pdf_text(pdf_docs):
|
39 |
+
docs=[]
|
40 |
+
for pdf in pdf_docs:
|
41 |
+
loader = PyPDFLoader(temp_file)
|
42 |
+
docs.extend(loader.load())
|
43 |
+
return docs
|
44 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def text_splitter(text):
|
46 |
text_splitter = RecursiveCharacterTextSplitter(
|
47 |
# Set a really small chunk size, just to show.
|
|
|
51 |
chunks=text_splitter.split_documents(text)
|
52 |
return chunks
|
53 |
|
54 |
+
#GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
55 |
+
#COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
56 |
|
57 |
def get_conversational_chain():
|
58 |
prompt_template = """
|
|
|
75 |
|
76 |
def embedding(chunk,query):
|
77 |
#embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
78 |
+
#embeddings = CohereEmbeddings(model="embed-english-v3.0")
|
79 |
+
embeddings=HuggingFaceEmbeddings()
|
80 |
db = Chroma.from_documents(chunk,embeddings)
|
81 |
doc = db.similarity_search(query)
|
82 |
print(doc)
|
|
|
93 |
st.header("Chat with your pdf💁")
|
94 |
with st.sidebar:
|
95 |
st.title("PDF FILE UPLOAD:")
|
96 |
+
pdf_docs = st.file_uploader("Upload your PDF File and Click on the Submit & Process Button", accept_multiple_files=TRUE, key="pdf_uploader")
|
97 |
|
98 |
query = st.chat_input("Ask a Question from the PDF File")
|
99 |
if query:
|
100 |
+
for file in os.listdir(pdf_docs):
|
101 |
+
raw_text = get_pdf(file)
|
102 |
text_chunks = text_splitter(raw_text)
|
103 |
st.session_state.messages.append({'role': 'user', "content": query})
|
104 |
response = embedding(text_chunks,query)
|