File size: 1,075 Bytes
71a3199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM

import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
# from trl import SFTTrainer

tokenizer = AutoTokenizer.from_pretrained("Gbssreejith/new_TinyLlama3")
model = AutoModelForCausalLM.from_pretrained("Gbssreejith/new_TinyLlama3")

def generate_response(prompt):
    pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=50)
    result = pipe(f"<s>[INST] {prompt} [/INST]")
    return result[0]['generated_text']

iface = gr.Interface(
    fn=generate_response,
    inputs="text",
    outputs="text",
    title="Text Generation",
    description="Enter a prompt and get a generated response.",
    examples=[
        ["I'm having trouble sleeping. Any advice?"],
        ["I sad i dont know what to do"]
    ]
)

iface.launch(share=True,debug=True)