|
import streamlit as st
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
def apply_mask(image_cv, mask, color=(0, 255, 0), alpha=0.5):
|
|
""" Apply a mask to an image with given color and alpha blend """
|
|
mask_bgr = np.zeros_like(image_cv)
|
|
mask_bgr[mask > 0] = color
|
|
return cv2.addWeighted(image_cv, 1 - alpha, mask_bgr, alpha, 0)
|
|
|
|
def draw_points(image_cv, points, labels):
|
|
""" Draw points on the image with different colors based on labels """
|
|
for coord, label in zip(points, labels):
|
|
color = (0, 255, 0) if label == 1 else (255, 0, 0)
|
|
cv2.circle(image_cv, tuple(map(int, coord)), 5, color, -1)
|
|
return image_cv
|
|
|
|
def draw_boxes(image_cv, boxes):
|
|
""" Draw boxes on the image """
|
|
for box in boxes:
|
|
x, y, w, h = map(int, box)
|
|
cv2.rectangle(image_cv, (x, y), (x + w, y + h), (255, 0, 0), 2)
|
|
return image_cv
|
|
|
|
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
|
|
image_cv = np.array(image.convert("RGB"))[..., ::-1]
|
|
|
|
for i, (mask, score) in enumerate(zip(masks, scores)):
|
|
image_with_mask = apply_mask(image_cv, mask)
|
|
|
|
if point_coords is not None:
|
|
assert input_labels is not None
|
|
image_with_mask = draw_points(image_with_mask, point_coords, input_labels)
|
|
|
|
if box_coords is not None:
|
|
image_with_mask = draw_boxes(image_with_mask, box_coords)
|
|
|
|
|
|
image_with_mask = cv2.cvtColor(image_with_mask, cv2.COLOR_BGR2RGB)
|
|
image_pil = Image.fromarray(image_with_mask)
|
|
|
|
|
|
st.image(image_pil, caption=f"Mask {i+1}, Score: {score:.3f}", use_column_width=True)
|
|
|
|
|
|
def apply_mask_to_image(image, mask):
|
|
|
|
if isinstance(image, Image.Image):
|
|
image = np.array(image)
|
|
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
alpha_channel = (mask * 255).astype(np.uint8)
|
|
|
|
|
|
masked_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
|
for c in range(3):
|
|
masked_image[..., c] = image[..., c] * mask
|
|
|
|
|
|
masked_image[..., 3] = alpha_channel
|
|
|
|
return masked_image
|
|
|
|
def show_masks_1(image, masks, scores):
|
|
mask_images = []
|
|
for i, (mask, score) in enumerate(zip(masks, scores)):
|
|
|
|
masked_image = apply_mask_to_image(image, mask)
|
|
|
|
|
|
pil_image = Image.fromarray(cv2.cvtColor(masked_image, cv2.COLOR_BGRA2RGBA))
|
|
mask_images.append((pil_image, score))
|
|
|
|
return mask_images
|
|
|
|
|
|
def apply_inverse_mask_to_image(image, mask):
|
|
|
|
if isinstance(image, Image.Image):
|
|
image = np.array(image)
|
|
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
alpha_channel = (1 - mask) * 255
|
|
|
|
|
|
inverse_masked_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
|
for c in range(3):
|
|
inverse_masked_image[..., c] = image[..., c] * (1 - mask)
|
|
|
|
|
|
inverse_masked_image[..., 3] = alpha_channel.astype(np.uint8)
|
|
|
|
return inverse_masked_image
|
|
|
|
def show_inverse_masks(image, masks, scores):
|
|
mask_images = []
|
|
for i, (mask, score) in enumerate(zip(masks, scores)):
|
|
|
|
inverse_masked_image = apply_inverse_mask_to_image(image, mask)
|
|
|
|
|
|
pil_image = Image.fromarray(cv2.cvtColor(inverse_masked_image, cv2.COLOR_BGRA2RGBA))
|
|
mask_images.append((pil_image, score))
|
|
|
|
return mask_images
|
|
|
|
import streamlit as st
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
def combine_mask_and_inverse(image, mask):
|
|
|
|
|
|
if isinstance(image, Image.Image):
|
|
image = np.array(image)
|
|
image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGR)
|
|
|
|
|
|
masked_region = cv2.bitwise_and(image, image, mask=mask.astype(np.uint8))
|
|
|
|
|
|
inverse_mask = 1 - mask
|
|
inverse_masked_region = cv2.bitwise_and(image, image, mask=inverse_mask.astype(np.uint8))
|
|
|
|
|
|
combined_image = cv2.add(masked_region, inverse_masked_region)
|
|
|
|
|
|
combined_image_rgba = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGBA)
|
|
|
|
return combined_image_rgba
|
|
|
|
def show_combined_masks(image, masks, scores):
|
|
|
|
mask_images = []
|
|
for i, (mask, score) in enumerate(zip(masks, scores)):
|
|
|
|
combined_image = combine_mask_and_inverse(image, mask)
|
|
|
|
|
|
pil_image = Image.fromarray(combined_image)
|
|
mask_images.append((pil_image, score))
|
|
|
|
return mask_images
|
|
|
|
|
|
def pixelate_area(image, mask, pixelation_level):
|
|
"""
|
|
Apply pixelation to the masked area of an image.
|
|
"""
|
|
pixelated_image = image.copy()
|
|
h, w, _ = image.shape
|
|
|
|
for y in range(0, h, pixelation_level):
|
|
for x in range(0, w, pixelation_level):
|
|
block = (slice(y, min(y + pixelation_level, h)), slice(x, min(x + pixelation_level, w)))
|
|
if np.any(mask[block]):
|
|
mean_color = image[block].mean(axis=(0, 1)).astype(int)
|
|
pixelated_image[block] = mean_color
|
|
|
|
return pixelated_image
|
|
|
|
def combine_pixelated_mask(image, mask, pixelation_level=10):
|
|
"""
|
|
Combine the pixelated masked areas with the original image.
|
|
"""
|
|
image_np = np.array(image)
|
|
mask_np = np.array(mask)
|
|
|
|
pixelated_mask = pixelate_area(image_np, mask_np, pixelation_level)
|
|
combined_image = Image.fromarray(pixelated_mask)
|
|
return combined_image
|
|
|
|
|
|
def change_hue(image, mask, hue_shift):
|
|
|
|
|
|
hsv_image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
|
|
hsv_image = cv2.cvtColor(hsv_image, cv2.COLOR_RGB2HSV)
|
|
|
|
|
|
hsv_image[..., 0] = (hsv_image[..., 0] + hue_shift) % 180
|
|
|
|
|
|
rgb_image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2RGB)
|
|
|
|
|
|
hue_changed_image = np.array(image).copy()
|
|
hue_changed_image[mask] = np.concatenate((rgb_image[mask], hue_changed_image[mask][..., 3:]), axis=-1)
|
|
|
|
return hue_changed_image
|
|
|
|
def combine_hue_changed_mask(image, mask, hue_shift):
|
|
|
|
image_np = np.array(image)
|
|
mask_np = np.array(mask).astype(bool)
|
|
|
|
hue_changed_area = change_hue(image_np, mask_np, hue_shift)
|
|
combined_image = Image.fromarray(hue_changed_area)
|
|
|
|
return combined_image
|
|
|
|
def replace_masked_area(original_image, replacement_image, mask):
|
|
|
|
replacement_image = cv2.resize(replacement_image, (original_image.shape[1], original_image.shape[0]))
|
|
|
|
|
|
replaced_image = original_image.copy()
|
|
|
|
|
|
replaced_image[mask] = replacement_image[mask]
|
|
|
|
return replaced_image
|
|
|
|
def combine_mask_replaced_image(original_image, replacement_image, mask):
|
|
|
|
|
|
original_np = np.array(original_image)
|
|
replacement_np = np.array(replacement_image)
|
|
mask_np = np.array(mask).astype(bool)
|
|
|
|
|
|
replaced_area = replace_masked_area(original_np, replacement_np, mask_np)
|
|
combined_image = Image.fromarray(replaced_area)
|
|
|
|
return combined_image
|
|
|
|
import streamlit as st
|
|
from PIL import Image
|
|
|
|
def resize_image(image, max_size=1024):
|
|
|
|
width, height = image.size
|
|
|
|
|
|
if width > height:
|
|
scaling_factor = max_size / width
|
|
else:
|
|
scaling_factor = max_size / height
|
|
|
|
|
|
if scaling_factor < 1:
|
|
|
|
new_width = int(width * scaling_factor)
|
|
new_height = int(height * scaling_factor)
|
|
|
|
|
|
image_resized = image.resize((new_width, new_height))
|
|
return image_resized
|
|
else:
|
|
|
|
return image
|
|
|
|
|
|
def combine_mask_and_inverse_gen(original_img, generated_img, mask):
|
|
|
|
original_img = original_img.convert("RGBA")
|
|
generated_img = generated_img.convert("RGBA")
|
|
|
|
|
|
generated_img = generated_img.resize(original_img.size)
|
|
|
|
|
|
orig_array = np.array(original_img)
|
|
gen_array = np.array(generated_img)
|
|
|
|
|
|
mask = Image.fromarray((mask * 255).astype(np.uint8))
|
|
mask = mask.resize(original_img.size, Image.NEAREST)
|
|
bool_mask = np.array(mask).astype(bool)
|
|
|
|
|
|
if bool_mask.ndim == 2:
|
|
bool_mask = bool_mask[:, :, np.newaxis]
|
|
|
|
|
|
combined_array = np.where(bool_mask, gen_array, orig_array)
|
|
|
|
|
|
combined_img = Image.fromarray(combined_array, "RGBA")
|
|
return combined_img
|
|
|