File size: 10,629 Bytes
53bf77d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import streamlit as st
import cv2
import numpy as np
from PIL import Image

def apply_mask(image_cv, mask, color=(0, 255, 0), alpha=0.5):
    """ Apply a mask to an image with given color and alpha blend """
    mask_bgr = np.zeros_like(image_cv)
    mask_bgr[mask > 0] = color
    return cv2.addWeighted(image_cv, 1 - alpha, mask_bgr, alpha, 0)

def draw_points(image_cv, points, labels):
    """ Draw points on the image with different colors based on labels """
    for coord, label in zip(points, labels):
        color = (0, 255, 0) if label == 1 else (255, 0, 0)  # Green for inclusive, Red for exclusive
        cv2.circle(image_cv, tuple(map(int, coord)), 5, color, -1)
    return image_cv

def draw_boxes(image_cv, boxes):
    """ Draw boxes on the image """
    for box in boxes:
        x, y, w, h = map(int, box)
        cv2.rectangle(image_cv, (x, y), (x + w, y + h), (255, 0, 0), 2)  # Red boxes
    return image_cv

def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
    image_cv = np.array(image.convert("RGB"))[..., ::-1]  # Convert PIL image to BGR format for OpenCV

    for i, (mask, score) in enumerate(zip(masks, scores)):
        image_with_mask = apply_mask(image_cv, mask)
        
        if point_coords is not None:
            assert input_labels is not None
            image_with_mask = draw_points(image_with_mask, point_coords, input_labels)

        if box_coords is not None:
            image_with_mask = draw_boxes(image_with_mask, box_coords)

        # Convert back to RGB and then to PIL for Streamlit
        image_with_mask = cv2.cvtColor(image_with_mask, cv2.COLOR_BGR2RGB)
        image_pil = Image.fromarray(image_with_mask)
        
        # Display the final image with all overlays
        st.image(image_pil, caption=f"Mask {i+1}, Score: {score:.3f}", use_column_width=True)


def apply_mask_to_image(image, mask):
    # Ensure the image is a NumPy array in BGR format
    if isinstance(image, Image.Image):
        image = np.array(image)
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

    # Create an alpha channel based on the mask
    alpha_channel = (mask * 255).astype(np.uint8)

    # Create an image with the mask applied only on masked areas
    masked_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
    for c in range(3):  # Apply the mask only to the RGB channels
        masked_image[..., c] = image[..., c] * mask

    # Add the alpha channel to make areas outside the mask transparent
    masked_image[..., 3] = alpha_channel

    return masked_image

def show_masks_1(image, masks, scores):
    mask_images = []
    for i, (mask, score) in enumerate(zip(masks, scores)):
        # Apply the mask to the image
        masked_image = apply_mask_to_image(image, mask)

        # Convert the masked image to PIL format for Streamlit
        pil_image = Image.fromarray(cv2.cvtColor(masked_image, cv2.COLOR_BGRA2RGBA))
        mask_images.append((pil_image, score))

    return mask_images


def apply_inverse_mask_to_image(image, mask):
    # Ensure the image is a NumPy array in BGR format
    if isinstance(image, Image.Image):
        image = np.array(image)
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

    # Create an alpha channel that is transparent inside the mask and opaque outside
    alpha_channel = (1 - mask) * 255

    # Create an image with the mask applied to the inverse areas
    inverse_masked_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
    for c in range(3):  # Apply the inverse mask to RGB channels
        inverse_masked_image[..., c] = image[..., c] * (1 - mask)

    # Add the alpha channel to make areas inside the mask transparent
    inverse_masked_image[..., 3] = alpha_channel.astype(np.uint8)

    return inverse_masked_image

def show_inverse_masks(image, masks, scores):
    mask_images = []
    for i, (mask, score) in enumerate(zip(masks, scores)):
        # Apply the inverse mask to the image
        inverse_masked_image = apply_inverse_mask_to_image(image, mask)

        # Convert the masked image to PIL format for Streamlit
        pil_image = Image.fromarray(cv2.cvtColor(inverse_masked_image, cv2.COLOR_BGRA2RGBA))
        mask_images.append((pil_image, score))

    return mask_images

import streamlit as st
import cv2
import numpy as np
from PIL import Image

def combine_mask_and_inverse(image, mask):
   
    # Ensure the image is a NumPy array in BGR format
    if isinstance(image, Image.Image):
        image = np.array(image)
        image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGR)

    # Apply the mask to get the masked region (in original color)
    masked_region = cv2.bitwise_and(image, image, mask=mask.astype(np.uint8))

    # Apply the inverse mask to get the inverse-masked region (in original color)
    inverse_mask = 1 - mask
    inverse_masked_region = cv2.bitwise_and(image, image, mask=inverse_mask.astype(np.uint8))

    # Combine both masked and inverse-masked regions
    combined_image = cv2.add(masked_region, inverse_masked_region)

    # Convert to RGBA format for transparency
    combined_image_rgba = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGBA)

    return combined_image_rgba

def show_combined_masks(image, masks, scores):
    
    mask_images = []
    for i, (mask, score) in enumerate(zip(masks, scores)):
        # Combine masked and inverse masked areas
        combined_image = combine_mask_and_inverse(image, mask)

        # Convert the combined image to PIL format for Streamlit
        pil_image = Image.fromarray(combined_image)
        mask_images.append((pil_image, score))

    return mask_images


def pixelate_area(image, mask, pixelation_level):
    """

    Apply pixelation to the masked area of an image.

    """
    pixelated_image = image.copy()
    h, w, _ = image.shape

    for y in range(0, h, pixelation_level):
        for x in range(0, w, pixelation_level):
            block = (slice(y, min(y + pixelation_level, h)), slice(x, min(x + pixelation_level, w)))
            if np.any(mask[block]):
                mean_color = image[block].mean(axis=(0, 1)).astype(int)
                pixelated_image[block] = mean_color

    return pixelated_image

def combine_pixelated_mask(image, mask, pixelation_level=10):
    """

    Combine the pixelated masked areas with the original image.

    """
    image_np = np.array(image)
    mask_np = np.array(mask)

    pixelated_mask = pixelate_area(image_np, mask_np, pixelation_level)
    combined_image = Image.fromarray(pixelated_mask)
    return combined_image


def change_hue(image, mask, hue_shift):
   
    # Convert the image from RGB to HSV
    hsv_image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
    hsv_image = cv2.cvtColor(hsv_image, cv2.COLOR_RGB2HSV)

    # Apply the hue shift to the masked area
    hsv_image[..., 0] = (hsv_image[..., 0] + hue_shift) % 180

    # Convert back to RGB format
    rgb_image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2RGB)

    # Combine the hue-changed area with the original image using the mask
    hue_changed_image = np.array(image).copy()
    hue_changed_image[mask] = np.concatenate((rgb_image[mask], hue_changed_image[mask][..., 3:]), axis=-1)

    return hue_changed_image

def combine_hue_changed_mask(image, mask, hue_shift):
   
    image_np = np.array(image)
    mask_np = np.array(mask).astype(bool)

    hue_changed_area = change_hue(image_np, mask_np, hue_shift)
    combined_image = Image.fromarray(hue_changed_area)

    return combined_image

def replace_masked_area(original_image, replacement_image, mask):
    # Ensure the replacement image is the same size as the original image
    replacement_image = cv2.resize(replacement_image, (original_image.shape[1], original_image.shape[0]))

    # Create a copy of the original image
    replaced_image = original_image.copy()

    # Replace the masked area with the corresponding area from the replacement image
    replaced_image[mask] = replacement_image[mask]

    return replaced_image

def combine_mask_replaced_image(original_image, replacement_image, mask):

    # Convert images to NumPy arrays
    original_np = np.array(original_image)
    replacement_np = np.array(replacement_image)
    mask_np = np.array(mask).astype(bool)

    # Replace the masked area
    replaced_area = replace_masked_area(original_np, replacement_np, mask_np)
    combined_image = Image.fromarray(replaced_area)

    return combined_image

import streamlit as st
from PIL import Image

def resize_image(image, max_size=1024):
    # Get the current width and height of the image
    width, height = image.size

    # Calculate the scaling factor
    if width > height:
        scaling_factor = max_size / width
    else:
        scaling_factor = max_size / height

    # Only resize if the image is larger than the max_size
    if scaling_factor < 1:
        # Calculate new dimensions
        new_width = int(width * scaling_factor)
        new_height = int(height * scaling_factor)

        # Resize the image
        image_resized = image.resize((new_width, new_height))
        return image_resized
    else:
        # Return the original image if it's already within the size limits
        return image


def combine_mask_and_inverse_gen(original_img, generated_img, mask):
    # Ensure images are in RGBA mode
    original_img = original_img.convert("RGBA")
    generated_img = generated_img.convert("RGBA")
    
    # Resize the generated image to match the original image size
    generated_img = generated_img.resize(original_img.size)
    
    # Convert images to arrays
    orig_array = np.array(original_img)
    gen_array = np.array(generated_img)
    
    # Resize the mask to match the original image size
    mask = Image.fromarray((mask * 255).astype(np.uint8))  # Convert mask to image for resizing
    mask = mask.resize(original_img.size, Image.NEAREST)   # Resize the mask
    bool_mask = np.array(mask).astype(bool)
    
    # Ensure the mask has the correct shape (H, W, 1)
    if bool_mask.ndim == 2:
        bool_mask = bool_mask[:, :, np.newaxis]
    
    # Combine images using the mask
    combined_array = np.where(bool_mask, gen_array, orig_array)
    
    # Convert combined array back to image
    combined_img = Image.fromarray(combined_array, "RGBA")
    return combined_img