File size: 10,629 Bytes
53bf77d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import streamlit as st
import cv2
import numpy as np
from PIL import Image
def apply_mask(image_cv, mask, color=(0, 255, 0), alpha=0.5):
""" Apply a mask to an image with given color and alpha blend """
mask_bgr = np.zeros_like(image_cv)
mask_bgr[mask > 0] = color
return cv2.addWeighted(image_cv, 1 - alpha, mask_bgr, alpha, 0)
def draw_points(image_cv, points, labels):
""" Draw points on the image with different colors based on labels """
for coord, label in zip(points, labels):
color = (0, 255, 0) if label == 1 else (255, 0, 0) # Green for inclusive, Red for exclusive
cv2.circle(image_cv, tuple(map(int, coord)), 5, color, -1)
return image_cv
def draw_boxes(image_cv, boxes):
""" Draw boxes on the image """
for box in boxes:
x, y, w, h = map(int, box)
cv2.rectangle(image_cv, (x, y), (x + w, y + h), (255, 0, 0), 2) # Red boxes
return image_cv
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
image_cv = np.array(image.convert("RGB"))[..., ::-1] # Convert PIL image to BGR format for OpenCV
for i, (mask, score) in enumerate(zip(masks, scores)):
image_with_mask = apply_mask(image_cv, mask)
if point_coords is not None:
assert input_labels is not None
image_with_mask = draw_points(image_with_mask, point_coords, input_labels)
if box_coords is not None:
image_with_mask = draw_boxes(image_with_mask, box_coords)
# Convert back to RGB and then to PIL for Streamlit
image_with_mask = cv2.cvtColor(image_with_mask, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(image_with_mask)
# Display the final image with all overlays
st.image(image_pil, caption=f"Mask {i+1}, Score: {score:.3f}", use_column_width=True)
def apply_mask_to_image(image, mask):
# Ensure the image is a NumPy array in BGR format
if isinstance(image, Image.Image):
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Create an alpha channel based on the mask
alpha_channel = (mask * 255).astype(np.uint8)
# Create an image with the mask applied only on masked areas
masked_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
for c in range(3): # Apply the mask only to the RGB channels
masked_image[..., c] = image[..., c] * mask
# Add the alpha channel to make areas outside the mask transparent
masked_image[..., 3] = alpha_channel
return masked_image
def show_masks_1(image, masks, scores):
mask_images = []
for i, (mask, score) in enumerate(zip(masks, scores)):
# Apply the mask to the image
masked_image = apply_mask_to_image(image, mask)
# Convert the masked image to PIL format for Streamlit
pil_image = Image.fromarray(cv2.cvtColor(masked_image, cv2.COLOR_BGRA2RGBA))
mask_images.append((pil_image, score))
return mask_images
def apply_inverse_mask_to_image(image, mask):
# Ensure the image is a NumPy array in BGR format
if isinstance(image, Image.Image):
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Create an alpha channel that is transparent inside the mask and opaque outside
alpha_channel = (1 - mask) * 255
# Create an image with the mask applied to the inverse areas
inverse_masked_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
for c in range(3): # Apply the inverse mask to RGB channels
inverse_masked_image[..., c] = image[..., c] * (1 - mask)
# Add the alpha channel to make areas inside the mask transparent
inverse_masked_image[..., 3] = alpha_channel.astype(np.uint8)
return inverse_masked_image
def show_inverse_masks(image, masks, scores):
mask_images = []
for i, (mask, score) in enumerate(zip(masks, scores)):
# Apply the inverse mask to the image
inverse_masked_image = apply_inverse_mask_to_image(image, mask)
# Convert the masked image to PIL format for Streamlit
pil_image = Image.fromarray(cv2.cvtColor(inverse_masked_image, cv2.COLOR_BGRA2RGBA))
mask_images.append((pil_image, score))
return mask_images
import streamlit as st
import cv2
import numpy as np
from PIL import Image
def combine_mask_and_inverse(image, mask):
# Ensure the image is a NumPy array in BGR format
if isinstance(image, Image.Image):
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGR)
# Apply the mask to get the masked region (in original color)
masked_region = cv2.bitwise_and(image, image, mask=mask.astype(np.uint8))
# Apply the inverse mask to get the inverse-masked region (in original color)
inverse_mask = 1 - mask
inverse_masked_region = cv2.bitwise_and(image, image, mask=inverse_mask.astype(np.uint8))
# Combine both masked and inverse-masked regions
combined_image = cv2.add(masked_region, inverse_masked_region)
# Convert to RGBA format for transparency
combined_image_rgba = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGBA)
return combined_image_rgba
def show_combined_masks(image, masks, scores):
mask_images = []
for i, (mask, score) in enumerate(zip(masks, scores)):
# Combine masked and inverse masked areas
combined_image = combine_mask_and_inverse(image, mask)
# Convert the combined image to PIL format for Streamlit
pil_image = Image.fromarray(combined_image)
mask_images.append((pil_image, score))
return mask_images
def pixelate_area(image, mask, pixelation_level):
"""
Apply pixelation to the masked area of an image.
"""
pixelated_image = image.copy()
h, w, _ = image.shape
for y in range(0, h, pixelation_level):
for x in range(0, w, pixelation_level):
block = (slice(y, min(y + pixelation_level, h)), slice(x, min(x + pixelation_level, w)))
if np.any(mask[block]):
mean_color = image[block].mean(axis=(0, 1)).astype(int)
pixelated_image[block] = mean_color
return pixelated_image
def combine_pixelated_mask(image, mask, pixelation_level=10):
"""
Combine the pixelated masked areas with the original image.
"""
image_np = np.array(image)
mask_np = np.array(mask)
pixelated_mask = pixelate_area(image_np, mask_np, pixelation_level)
combined_image = Image.fromarray(pixelated_mask)
return combined_image
def change_hue(image, mask, hue_shift):
# Convert the image from RGB to HSV
hsv_image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
hsv_image = cv2.cvtColor(hsv_image, cv2.COLOR_RGB2HSV)
# Apply the hue shift to the masked area
hsv_image[..., 0] = (hsv_image[..., 0] + hue_shift) % 180
# Convert back to RGB format
rgb_image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2RGB)
# Combine the hue-changed area with the original image using the mask
hue_changed_image = np.array(image).copy()
hue_changed_image[mask] = np.concatenate((rgb_image[mask], hue_changed_image[mask][..., 3:]), axis=-1)
return hue_changed_image
def combine_hue_changed_mask(image, mask, hue_shift):
image_np = np.array(image)
mask_np = np.array(mask).astype(bool)
hue_changed_area = change_hue(image_np, mask_np, hue_shift)
combined_image = Image.fromarray(hue_changed_area)
return combined_image
def replace_masked_area(original_image, replacement_image, mask):
# Ensure the replacement image is the same size as the original image
replacement_image = cv2.resize(replacement_image, (original_image.shape[1], original_image.shape[0]))
# Create a copy of the original image
replaced_image = original_image.copy()
# Replace the masked area with the corresponding area from the replacement image
replaced_image[mask] = replacement_image[mask]
return replaced_image
def combine_mask_replaced_image(original_image, replacement_image, mask):
# Convert images to NumPy arrays
original_np = np.array(original_image)
replacement_np = np.array(replacement_image)
mask_np = np.array(mask).astype(bool)
# Replace the masked area
replaced_area = replace_masked_area(original_np, replacement_np, mask_np)
combined_image = Image.fromarray(replaced_area)
return combined_image
import streamlit as st
from PIL import Image
def resize_image(image, max_size=1024):
# Get the current width and height of the image
width, height = image.size
# Calculate the scaling factor
if width > height:
scaling_factor = max_size / width
else:
scaling_factor = max_size / height
# Only resize if the image is larger than the max_size
if scaling_factor < 1:
# Calculate new dimensions
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
# Resize the image
image_resized = image.resize((new_width, new_height))
return image_resized
else:
# Return the original image if it's already within the size limits
return image
def combine_mask_and_inverse_gen(original_img, generated_img, mask):
# Ensure images are in RGBA mode
original_img = original_img.convert("RGBA")
generated_img = generated_img.convert("RGBA")
# Resize the generated image to match the original image size
generated_img = generated_img.resize(original_img.size)
# Convert images to arrays
orig_array = np.array(original_img)
gen_array = np.array(generated_img)
# Resize the mask to match the original image size
mask = Image.fromarray((mask * 255).astype(np.uint8)) # Convert mask to image for resizing
mask = mask.resize(original_img.size, Image.NEAREST) # Resize the mask
bool_mask = np.array(mask).astype(bool)
# Ensure the mask has the correct shape (H, W, 1)
if bool_mask.ndim == 2:
bool_mask = bool_mask[:, :, np.newaxis]
# Combine images using the mask
combined_array = np.where(bool_mask, gen_array, orig_array)
# Convert combined array back to image
combined_img = Image.fromarray(combined_array, "RGBA")
return combined_img
|