# import cv2 import numpy as np import tensorflow as tf # Load the face detector with the correct file path face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # Load the emotion model emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"} emotion_model = tf.keras.models.load_model("model_emotion.h5") emotion_model.load_weights("model_weights_new.h5") print("Loaded emotion model from disk") # Define the predict_img function def predict_img(frame): # Resize the image frame = cv2.resize(frame, (1280, 720)) num_faces = face_detector.detectMultiScale(frame, scaleFactor=1.3, minNeighbors=5) # Draw bounding boxes and annotate the image for (x, y, w, h) in num_faces: cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (0, 255, 0), 4) roi_gray_frame = frame[y:y + h, x:x + w] # Preprocess the input image resized_img = cv2.resize(roi_gray_frame, (48, 48)) gray_img = cv2.cvtColor(resized_img, cv2.COLOR_BGR2GRAY) input_img = np.expand_dims(gray_img, axis=-1) # Add the channel dimension input_img = np.expand_dims(input_img, axis=0) # Add the batch dimension # Normalize the image input_img = input_img / 255.0 # Predict the emotions emotion_prediction = emotion_model.predict(input_img) maxindex = int(np.argmax(emotion_prediction)) emotion_label = emotion_dict[maxindex] # Annotate the image with emotion label cv2.putText(frame, emotion_label, (x+5, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA) return frame # Capture video from webcam cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break annotated_frame = predict_img(frame) cv2.imshow('Emotion Detection', annotated_frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()