Update src/streamlit_app.py
Browse files- src/streamlit_app.py +216 -33
src/streamlit_app.py
CHANGED
@@ -1,40 +1,223 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
# Fixed and Hugging Face Spaces-Compatible Code
|
2 |
+
|
3 |
+
import os
|
4 |
import streamlit as st
|
5 |
+
import pandas as pd
|
6 |
+
import subprocess
|
7 |
+
import json
|
8 |
+
import plotly.express as px
|
9 |
+
import re
|
10 |
+
import io
|
11 |
+
import requests
|
12 |
+
from sqlalchemy import create_engine, text, inspect
|
13 |
+
|
14 |
+
# --- Get HF Token ---
|
15 |
+
HF_TOKEN = os.environ["HF_TOKEN"] # will raise KeyError if not set
|
16 |
+
|
17 |
+
# --- Helper: Call Mistral Model ---
|
18 |
+
def mistral_call(schema=None, question="no questions were asked", hf_token=HF_TOKEN, model_id="mistralai/Mistral-7B-Instruct-v0.3"):
|
19 |
+
api_url = f"https://api-inference.huggingface.co/models/{model_id}"
|
20 |
+
headers = {
|
21 |
+
"Authorization": f"Bearer {hf_token}",
|
22 |
+
"Content-Type": "application/json"
|
23 |
+
}
|
24 |
+
prompt = f"""You are a helpful assistant that translates natural language questions into SQL using a database schema.
|
25 |
+
### Schema:
|
26 |
+
{schema}
|
27 |
+
### Question:
|
28 |
+
{question}
|
29 |
+
"""
|
30 |
+
payload = {
|
31 |
+
"inputs": prompt,
|
32 |
+
"parameters": {
|
33 |
+
"max_new_tokens": 500,
|
34 |
+
"do_sample": True,
|
35 |
+
"temperature": 0.3,
|
36 |
+
}
|
37 |
+
}
|
38 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
39 |
+
if response.status_code == 200:
|
40 |
+
try:
|
41 |
+
generated = response.json()[0]['generated_text']
|
42 |
+
return generated.split("### Question:")[-1].strip()
|
43 |
+
except Exception as e:
|
44 |
+
return f"Error parsing response: {e}"
|
45 |
+
else:
|
46 |
+
return f"API call failed: {response.status_code}\n{response.text}"
|
47 |
+
|
48 |
+
# --- Visualization Suggestion ---
|
49 |
+
def extract_json(text):
|
50 |
+
match = re.search(r"\{.*?\}", text, re.DOTALL)
|
51 |
+
if match:
|
52 |
+
try:
|
53 |
+
return json.loads(match.group(0))
|
54 |
+
except json.JSONDecodeError:
|
55 |
+
return None
|
56 |
+
return None
|
57 |
|
58 |
+
def get_visualization_suggestion(data):
|
59 |
+
prompt = f"""
|
60 |
+
These are the dataset column names: {list(data.columns)}.
|
61 |
+
Suggest one visualization using the format:
|
62 |
+
{{"x": "column", "y": "column or list", "chart_type": "bar/line/scatter/pie"}}
|
63 |
"""
|
64 |
+
response = mistral_call(question=prompt)
|
65 |
+
return extract_json(response)
|
66 |
+
|
67 |
+
# --- Demo Data Generator ---
|
68 |
+
def generate_demo_data_csv(user_input, num_rows=10):
|
69 |
+
prompt = f"""
|
70 |
+
Generate a {num_rows}-row structured dataset in CSV format with quoted column headers and values:
|
71 |
+
"{user_input}"
|
72 |
+
"""
|
73 |
+
response = mistral_call(question=prompt)
|
74 |
+
csv_data = "\n".join([line.strip() for line in response.splitlines() if line.strip().startswith('"')])
|
75 |
+
if csv_data:
|
76 |
+
try:
|
77 |
+
df = pd.read_csv(io.StringIO(csv_data))
|
78 |
+
buffer = io.StringIO()
|
79 |
+
df.to_csv(buffer, index=False)
|
80 |
+
return "Demo data generated.", buffer
|
81 |
+
except Exception as e:
|
82 |
+
return f"CSV error: {e}", None
|
83 |
+
return "No CSV found.", None
|
84 |
+
|
85 |
+
# --- SQL Utilities ---
|
86 |
+
def extract_sql_code_blocks(text):
|
87 |
+
return re.findall(r"```sql\s+(.*?)```", text, re.DOTALL | re.IGNORECASE)
|
88 |
|
89 |
+
def remove_think_tags(text):
|
90 |
+
return re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL | re.IGNORECASE)
|
|
|
91 |
|
92 |
+
def classify_sql_task_prompt_engineered(user_input: str) -> str:
|
93 |
+
prompt = f"""
|
94 |
+
Classify into:
|
95 |
+
CREATE_TABLE, INSERT_INTO, SELECT, UPDATE, DELETE, ALTER_TABLE, INSERT_CSV_EXISTING, INSERT_CSV_NEW
|
96 |
+
Input: {user_input}
|
97 |
+
Only return the task.
|
98 |
"""
|
99 |
+
classification = mistral_call(question=prompt)
|
100 |
+
cleaned = remove_think_tags(classification).strip().upper()
|
101 |
+
for t in ["CREATE_TABLE", "INSERT_INTO", "SELECT", "UPDATE", "DELETE", "ALTER_TABLE", "INSERT_CSV_EXISTING", "INSERT_CSV_NEW"]:
|
102 |
+
if t in cleaned:
|
103 |
+
return t
|
104 |
+
return "UNKNOWN"
|
105 |
+
|
106 |
+
def handle_query(user_input, engine, task_type):
|
107 |
+
try:
|
108 |
+
inspector = inspect(engine)
|
109 |
+
tables = inspector.get_table_names()
|
110 |
+
prompt = f"Generate {task_type} SQL for: {user_input} using tables: {tables}"
|
111 |
+
sql_code = mistral_call(question=prompt)
|
112 |
+
sql_code = extract_sql_code_blocks(sql_code)
|
113 |
+
return execute_sql(sql_code, engine)
|
114 |
+
except Exception as e:
|
115 |
+
return "None", f"Error: {e}"
|
116 |
+
|
117 |
+
def execute_sql(sql_code, engine):
|
118 |
+
try:
|
119 |
+
if isinstance(sql_code, list):
|
120 |
+
sql_code = "\n".join(sql_code)
|
121 |
+
statements = [stmt.strip() for stmt in sql_code.split(';') if stmt.strip()]
|
122 |
+
with engine.connect() as conn:
|
123 |
+
for stmt in statements:
|
124 |
+
conn.execute(text(stmt + ";"))
|
125 |
+
conn.commit()
|
126 |
+
return sql_code, "β
SQL executed."
|
127 |
+
except Exception as e:
|
128 |
+
return "None", f"SQL error: {e}"
|
129 |
+
|
130 |
+
def insert_csv_existing(table_name, csv_file, engine):
|
131 |
+
try:
|
132 |
+
df = pd.read_csv(csv_file)
|
133 |
+
df.to_sql(table_name, engine, if_exists='append', index=False)
|
134 |
+
return f"β
CSV inserted into '{table_name}'."
|
135 |
+
except Exception as e:
|
136 |
+
return f"CSV insert error: {e}"
|
137 |
+
|
138 |
+
def insert_csv_new(table_name, csv_file, engine):
|
139 |
+
try:
|
140 |
+
df = pd.read_csv(csv_file)
|
141 |
+
df.to_sql(table_name, engine, if_exists='replace', index=False)
|
142 |
+
return f"β
CSV inserted into new table '{table_name}'."
|
143 |
+
except Exception as e:
|
144 |
+
return f"New CSV insert error: {e}"
|
145 |
+
|
146 |
+
# --- Streamlit App ---
|
147 |
+
st.set_page_config(page_title="AI Dashboard", layout="wide")
|
148 |
+
st.title("π€ AI-Powered Multi-Feature Dashboard")
|
149 |
+
|
150 |
+
st.sidebar.title("Navigation")
|
151 |
+
option = st.sidebar.radio("Select Feature", ["π Data Visualization", "π§ SQL Query Generator", "π Demo Data Generator", "π§ Smart SQL Task Handler"])
|
152 |
+
|
153 |
+
if option == "π Data Visualization":
|
154 |
+
uploaded_file = st.file_uploader("Upload your CSV", type="csv")
|
155 |
+
if uploaded_file:
|
156 |
+
df = pd.read_csv(uploaded_file)
|
157 |
+
df.columns = df.columns.str.strip()
|
158 |
+
st.dataframe(df.head())
|
159 |
+
with st.spinner("Getting chart suggestion..."):
|
160 |
+
suggestion = get_visualization_suggestion(df)
|
161 |
+
if suggestion:
|
162 |
+
x_col = suggestion.get("x", "").strip()
|
163 |
+
y_col = suggestion.get("y", [])
|
164 |
+
y_col = [y_col] if isinstance(y_col, str) else y_col
|
165 |
+
chart = suggestion.get("chart_type")
|
166 |
+
if x_col in df.columns and all(y in df.columns for y in y_col):
|
167 |
+
fig = None
|
168 |
+
if chart == "bar":
|
169 |
+
fig = px.bar(df, x=x_col, y=y_col)
|
170 |
+
elif chart == "line":
|
171 |
+
fig = px.line(df, x=x_col, y=y_col)
|
172 |
+
elif chart == "scatter":
|
173 |
+
fig = px.scatter(df, x=x_col, y=y_col)
|
174 |
+
elif chart == "pie" and len(y_col) == 1:
|
175 |
+
fig = px.pie(df, names=x_col, values=y_col[0])
|
176 |
+
if fig:
|
177 |
+
st.plotly_chart(fig)
|
178 |
+
else:
|
179 |
+
st.error("Unsupported chart type.")
|
180 |
+
else:
|
181 |
+
st.error("Invalid column suggestion from model.")
|
182 |
+
|
183 |
+
elif option == "π§ SQL Query Generator":
|
184 |
+
user_input = st.text_area("Describe your SQL query in plain English:")
|
185 |
+
if st.button("Generate SQL"):
|
186 |
+
st.code(mistral_call(question=user_input))
|
187 |
+
|
188 |
+
elif option == "π Demo Data Generator":
|
189 |
+
user_input = st.text_area("Describe your dataset:")
|
190 |
+
num_rows = st.number_input("Rows", 1, 1000, 10)
|
191 |
+
if st.button("Generate Dataset"):
|
192 |
+
msg, buffer = generate_demo_data_csv(user_input, num_rows)
|
193 |
+
st.write(msg)
|
194 |
+
if buffer:
|
195 |
+
st.download_button("Download CSV", buffer.getvalue(), file_name="generated_data.csv", mime="text/csv")
|
196 |
+
|
197 |
+
elif option == "π§ Smart SQL Task Handler":
|
198 |
+
st.sidebar.header("DB Settings")
|
199 |
+
db_type = "SQLite"
|
200 |
+
db_path = st.sidebar.text_input("SQLite File Path", value="smart_sql.db")
|
201 |
+
connection_url = f"sqlite:///{db_path}"
|
202 |
+
try:
|
203 |
+
engine = create_engine(connection_url)
|
204 |
+
with engine.connect(): pass
|
205 |
+
st.sidebar.success("Connected!")
|
206 |
+
except Exception as e:
|
207 |
+
st.sidebar.error(f"Connection failed: {e}")
|
208 |
+
st.stop()
|
209 |
|
210 |
+
user_input = st.text_area("Enter SQL task (or natural language):")
|
211 |
+
csv_file = st.file_uploader("Optional CSV Upload")
|
212 |
+
table_name = st.text_input("Table name (for CSV):")
|
213 |
+
if st.button("Run SQL Task"):
|
214 |
+
task = classify_sql_task_prompt_engineered(user_input)
|
215 |
+
st.markdown(f"**Detected Task:** `{task}`")
|
216 |
+
if task == "INSERT_CSV_EXISTING" and csv_file and table_name:
|
217 |
+
st.write(insert_csv_existing(table_name, csv_file, engine))
|
218 |
+
elif task == "INSERT_CSV_NEW" and csv_file and table_name:
|
219 |
+
st.write(insert_csv_new(table_name, csv_file, engine))
|
220 |
+
else:
|
221 |
+
sql_code, msg = handle_query(user_input, engine, task)
|
222 |
+
st.code(sql_code)
|
223 |
+
st.write(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|