Garvitj commited on
Commit
5b5367b
·
verified ·
1 Parent(s): 5e7d474

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from ultralytics import YOLO
3
+ from PIL import Image, ImageDraw
4
+ import tempfile
5
+ import os
6
+
7
+ # Load your trained model
8
+ model = YOLO("yolov8n.pt") # Replace with your trained model .pt path
9
+
10
+ # Detection function with confidence filter
11
+ def detect_disease(image):
12
+ # Save input to a temporary file
13
+ temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
14
+ image.save(temp.name)
15
+
16
+ # Run YOLOv8 inference
17
+ results = model(temp.name)[0] # Get first result from list
18
+
19
+ # Filter predictions with confidence >= 0.5
20
+ filtered_boxes = []
21
+ for box in results.boxes.data:
22
+ x1, y1, x2, y2, score, cls_id = box.tolist()
23
+ if score >= 0.5:
24
+ filtered_boxes.append((x1, y1, x2, y2, score, int(cls_id)))
25
+
26
+ # Draw boxes on image
27
+ draw = ImageDraw.Draw(image)
28
+ class_names = model.names
29
+
30
+ for x1, y1, x2, y2, score, cls_id in filtered_boxes:
31
+ draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
32
+ draw.text((x1, y1 - 10), f"{class_names[cls_id]}: {score:.2f}", fill="red")
33
+
34
+ return image
35
+
36
+ # Gradio Interface
37
+ interface = gr.Interface(
38
+ fn=detect_disease,
39
+ inputs=gr.Image(type="pil"),
40
+ outputs=gr.Image(type="pil"),
41
+ title="🌿 Plant Disease Detector (YOLOv8)",
42
+ description="Upload a leaf image. This model will detect plant diseases using YOLOv8. Only results with confidence ≥ 50% are shown."
43
+ )
44
+
45
+ # Launch app
46
+ interface.launch()