Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import librosa
|
5 |
+
import moviepy.editor as mp
|
6 |
+
import speech_recognition as sr
|
7 |
+
import tempfile
|
8 |
+
import wave
|
9 |
+
import os
|
10 |
+
import tensorflow as tf
|
11 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
12 |
+
from tensorflow.keras.models import load_model, model_from_json
|
13 |
+
from sklearn.preprocessing import StandardScaler
|
14 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
15 |
+
import nltk
|
16 |
+
from nltk.corpus import stopwords
|
17 |
+
from nltk.stem import WordNetLemmatizer
|
18 |
+
import pickle
|
19 |
+
import json
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
nltk.download('punkt') # Tokenizer
|
23 |
+
nltk.download('wordnet') # WordNet lemmatizer
|
24 |
+
nltk.download('stopwords') # Stopwords
|
25 |
+
|
26 |
+
# Load text emotion model
|
27 |
+
with open('model_architecture_for_text_emotion_updated_json.json', 'r') as json_file:
|
28 |
+
model_json = json_file.read()
|
29 |
+
text_model = model_from_json(model_json)
|
30 |
+
text_model.load_weights("model_for_text_emotion_updated(1).keras")
|
31 |
+
|
32 |
+
# Load tokenizer
|
33 |
+
with open('tokenizer.json') as json_file:
|
34 |
+
tokenizer_json = json.load(json_file)
|
35 |
+
tokenizer = tokenizer_from_json(tokenizer_json)
|
36 |
+
|
37 |
+
# Load LLM chatbot (replace with LLama or another LLM of your choice)
|
38 |
+
chatbot = pipeline("text-generation", model="facebook/blenderbot-3B")
|
39 |
+
|
40 |
+
# Initialize NLTK
|
41 |
+
lemmatizer = WordNetLemmatizer()
|
42 |
+
stop_words = set(stopwords.words('english'))
|
43 |
+
|
44 |
+
def preprocess_text(text):
|
45 |
+
tokens = nltk.word_tokenize(text.lower())
|
46 |
+
tokens = [word for word in tokens if word.isalnum() and word not in stop_words]
|
47 |
+
lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
48 |
+
return ' '.join(lemmatized_tokens)
|
49 |
+
|
50 |
+
# Transcribe audio and get emotion
|
51 |
+
|
52 |
+
def transcribe_audio(audio_file):
|
53 |
+
recognizer = sr.Recognizer()
|
54 |
+
with sr.AudioFile(audio_file) as source:
|
55 |
+
audio_record = recognizer.record(source)
|
56 |
+
text = recognizer.recognize_google(audio_record)
|
57 |
+
|
58 |
+
pre_text = preprocess_text(text)
|
59 |
+
title_seq = tokenizer.texts_to_sequences([pre_text])
|
60 |
+
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
|
61 |
+
inp1 = np.array(padded_title_seq)
|
62 |
+
text_prediction = text_model.predict(inp1)
|
63 |
+
|
64 |
+
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
|
65 |
+
max_index = text_prediction.argmax()
|
66 |
+
return text, mapping[max_index]
|
67 |
+
|
68 |
+
# Chatbot response
|
69 |
+
|
70 |
+
def chatbot_response(audio_file):
|
71 |
+
user_input, emotion = transcribe_audio(audio_file)
|
72 |
+
response = chatbot(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
|
73 |
+
return f"Detected Emotion: {emotion}\nChatbot: {response}"
|
74 |
+
|
75 |
+
# Create Gradio Interface
|
76 |
+
iface = gr.Interface(
|
77 |
+
fn=chatbot_response,
|
78 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
79 |
+
outputs="text",
|
80 |
+
title="Emotion-Aware AI Chatbot",
|
81 |
+
description="Speak into the microphone, and the chatbot will analyze your emotion and respond accordingly."
|
82 |
+
)
|
83 |
+
|
84 |
+
iface.launch()
|