Update app.py
Browse files
app.py
CHANGED
@@ -9,9 +9,9 @@ import torch
|
|
9 |
from transformers import BertTokenizer, BertModel
|
10 |
import torch.nn.functional as F
|
11 |
|
12 |
-
# Load pre-trained
|
13 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
14 |
-
|
15 |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
16 |
|
17 |
# Initialize Groq client
|
@@ -23,14 +23,11 @@ system_prompt = {
|
|
23 |
"content": "You are a useful assistant. You reply with efficient answers."
|
24 |
}
|
25 |
|
26 |
-
# Function to interact with Groq for generating response
|
27 |
async def chat_groq(message, history):
|
28 |
messages = [system_prompt]
|
29 |
-
|
30 |
for msg in history:
|
31 |
messages.append({"role": "user", "content": str(msg[0])})
|
32 |
messages.append({"role": "assistant", "content": str(msg[1])})
|
33 |
-
|
34 |
messages.append({"role": "user", "content": str(message)})
|
35 |
|
36 |
response_content = ''
|
@@ -49,13 +46,11 @@ async def chat_groq(message, history):
|
|
49 |
response_content += chunk.choices[0].delta.content
|
50 |
yield response_content
|
51 |
|
52 |
-
# Extract text from an image using Tesseract
|
53 |
def extract_text_from_image(filepath: str, languages: List[str]):
|
54 |
image = Image.open(filepath)
|
55 |
-
lang_str = '+'.join(languages)
|
56 |
return pytesseract.image_to_string(image=image, lang=lang_str)
|
57 |
|
58 |
-
# Assign badges based on the grade
|
59 |
def assign_badge(grade):
|
60 |
if grade == 5:
|
61 |
return "Gold Badge π"
|
@@ -66,7 +61,6 @@ def assign_badge(grade):
|
|
66 |
else:
|
67 |
return "Keep Improving Badge πͺ"
|
68 |
|
69 |
-
# Categorize feedback into clarity, completeness, and accuracy
|
70 |
def detailed_feedback(similarity_score):
|
71 |
if similarity_score >= 0.9:
|
72 |
return {"Clarity": "Excellent", "Completeness": "Complete", "Accuracy": "Accurate"}
|
@@ -77,7 +71,6 @@ def detailed_feedback(similarity_score):
|
|
77 |
else:
|
78 |
return {"Clarity": "Needs Improvement", "Completeness": "Incomplete", "Accuracy": "Inaccurate"}
|
79 |
|
80 |
-
# Assign grades based on similarity score
|
81 |
def get_grade(similarity_score):
|
82 |
if similarity_score >= 0.9:
|
83 |
return 5
|
@@ -90,59 +83,50 @@ def get_grade(similarity_score):
|
|
90 |
else:
|
91 |
return 1
|
92 |
|
93 |
-
# Function to get BERT embeddings
|
94 |
def get_bert_embedding(text):
|
95 |
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
96 |
with torch.no_grad():
|
97 |
-
outputs =
|
98 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
99 |
return embeddings
|
100 |
|
101 |
-
# Function to calculate cosine similarity
|
102 |
def calculate_cosine_similarity(embedding1, embedding2):
|
103 |
similarity = F.cosine_similarity(embedding1, embedding2)
|
104 |
return similarity.item()
|
105 |
|
106 |
-
# Function to calculate sentence embedding similarity
|
107 |
def calculate_sentence_similarity(text1, text2):
|
108 |
embedding1 = sentence_model.encode(text1, convert_to_tensor=True)
|
109 |
embedding2 = sentence_model.encode(text2, convert_to_tensor=True)
|
110 |
return util.pytorch_cos_sim(embedding1, embedding2).item()
|
111 |
|
112 |
-
# Function to compare logic of student and teacher answers
|
113 |
def compare_answers(student_answer, teacher_answer):
|
114 |
bert_similarity = calculate_cosine_similarity(get_bert_embedding(student_answer), get_bert_embedding(teacher_answer))
|
115 |
-
|
116 |
-
# Emphasize the importance of BERT similarity
|
117 |
sentence_similarity = calculate_sentence_similarity(student_answer, teacher_answer)
|
118 |
-
|
119 |
# Use a higher weight for BERT similarity
|
120 |
-
final_similarity = (0.
|
121 |
return final_similarity
|
122 |
|
123 |
-
# Function to extract keywords from the model answer
|
124 |
def extract_keywords(text):
|
125 |
return set(text.lower().split())
|
126 |
|
127 |
-
# Adjust grading based on key terms present in student answer
|
128 |
def check_keywords(student_answer, model_answer):
|
129 |
student_keywords = extract_keywords(student_answer)
|
130 |
teacher_keywords = extract_keywords(model_answer)
|
131 |
keyword_overlap = len(student_keywords.intersection(teacher_keywords))
|
132 |
-
return keyword_overlap / (len(teacher_keywords) if len(teacher_keywords) > 0 else 1)
|
133 |
|
134 |
-
# Function to evaluate student's answer by comparing it to a model answer
|
135 |
def evaluate_answer(image, languages, model_answer):
|
136 |
student_answer = extract_text_from_image(image, languages)
|
137 |
|
138 |
-
# Calculate semantic similarity
|
139 |
semantic_similarity = compare_answers(student_answer, model_answer)
|
140 |
|
141 |
-
#
|
142 |
keyword_similarity = check_keywords(student_answer, model_answer)
|
143 |
|
144 |
-
#
|
145 |
-
combined_similarity = (semantic_similarity +
|
146 |
grade = get_grade(combined_similarity)
|
147 |
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
148 |
badge = assign_badge(grade)
|
@@ -150,18 +134,15 @@ def evaluate_answer(image, languages, model_answer):
|
|
150 |
prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
|
151 |
return grade, combined_similarity * 100, feedback, badge, detailed_feedback_msg, prompt
|
152 |
|
153 |
-
# Main interface function for Gradio
|
154 |
async def gradio_interface(image, languages: List[str], model_answer="The process of photosynthesis helps plants produce glucose using sunlight.", prompt="", history=[]):
|
155 |
grade, similarity_score, feedback, badge, detailed_feedback_msg, prompt = evaluate_answer(image, languages, model_answer)
|
156 |
response = ""
|
157 |
async for result in chat_groq(prompt, history):
|
158 |
-
response = result
|
159 |
return grade, similarity_score, feedback, badge, detailed_feedback_msg, response
|
160 |
|
161 |
-
# Get available Tesseract languages
|
162 |
language_choices = pytesseract.get_languages()
|
163 |
|
164 |
-
# Define Gradio interface
|
165 |
interface = gr.Interface(
|
166 |
fn=gradio_interface,
|
167 |
inputs=[
|
@@ -174,7 +155,6 @@ interface = gr.Interface(
|
|
174 |
gr.Text(label="Grade"),
|
175 |
gr.Number(label="Similarity Score (%)"),
|
176 |
gr.Text(label="Feedback"),
|
177 |
-
# gr.HTML(label="Visual Feedback"),
|
178 |
gr.Text(label="Badge"),
|
179 |
gr.JSON(label="Detailed Feedback"),
|
180 |
gr.Text(label="Generated Response")
|
|
|
9 |
from transformers import BertTokenizer, BertModel
|
10 |
import torch.nn.functional as F
|
11 |
|
12 |
+
# Load pre-trained models
|
13 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
14 |
+
bert_model = BertModel.from_pretrained('bert-base-uncased')
|
15 |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
16 |
|
17 |
# Initialize Groq client
|
|
|
23 |
"content": "You are a useful assistant. You reply with efficient answers."
|
24 |
}
|
25 |
|
|
|
26 |
async def chat_groq(message, history):
|
27 |
messages = [system_prompt]
|
|
|
28 |
for msg in history:
|
29 |
messages.append({"role": "user", "content": str(msg[0])})
|
30 |
messages.append({"role": "assistant", "content": str(msg[1])})
|
|
|
31 |
messages.append({"role": "user", "content": str(message)})
|
32 |
|
33 |
response_content = ''
|
|
|
46 |
response_content += chunk.choices[0].delta.content
|
47 |
yield response_content
|
48 |
|
|
|
49 |
def extract_text_from_image(filepath: str, languages: List[str]):
|
50 |
image = Image.open(filepath)
|
51 |
+
lang_str = '+'.join(languages)
|
52 |
return pytesseract.image_to_string(image=image, lang=lang_str)
|
53 |
|
|
|
54 |
def assign_badge(grade):
|
55 |
if grade == 5:
|
56 |
return "Gold Badge π"
|
|
|
61 |
else:
|
62 |
return "Keep Improving Badge πͺ"
|
63 |
|
|
|
64 |
def detailed_feedback(similarity_score):
|
65 |
if similarity_score >= 0.9:
|
66 |
return {"Clarity": "Excellent", "Completeness": "Complete", "Accuracy": "Accurate"}
|
|
|
71 |
else:
|
72 |
return {"Clarity": "Needs Improvement", "Completeness": "Incomplete", "Accuracy": "Inaccurate"}
|
73 |
|
|
|
74 |
def get_grade(similarity_score):
|
75 |
if similarity_score >= 0.9:
|
76 |
return 5
|
|
|
83 |
else:
|
84 |
return 1
|
85 |
|
|
|
86 |
def get_bert_embedding(text):
|
87 |
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
88 |
with torch.no_grad():
|
89 |
+
outputs = bert_model(**inputs)
|
90 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
91 |
return embeddings
|
92 |
|
|
|
93 |
def calculate_cosine_similarity(embedding1, embedding2):
|
94 |
similarity = F.cosine_similarity(embedding1, embedding2)
|
95 |
return similarity.item()
|
96 |
|
|
|
97 |
def calculate_sentence_similarity(text1, text2):
|
98 |
embedding1 = sentence_model.encode(text1, convert_to_tensor=True)
|
99 |
embedding2 = sentence_model.encode(text2, convert_to_tensor=True)
|
100 |
return util.pytorch_cos_sim(embedding1, embedding2).item()
|
101 |
|
|
|
102 |
def compare_answers(student_answer, teacher_answer):
|
103 |
bert_similarity = calculate_cosine_similarity(get_bert_embedding(student_answer), get_bert_embedding(teacher_answer))
|
|
|
|
|
104 |
sentence_similarity = calculate_sentence_similarity(student_answer, teacher_answer)
|
105 |
+
|
106 |
# Use a higher weight for BERT similarity
|
107 |
+
final_similarity = (0.75 * bert_similarity + 0.25 * sentence_similarity)
|
108 |
return final_similarity
|
109 |
|
|
|
110 |
def extract_keywords(text):
|
111 |
return set(text.lower().split())
|
112 |
|
|
|
113 |
def check_keywords(student_answer, model_answer):
|
114 |
student_keywords = extract_keywords(student_answer)
|
115 |
teacher_keywords = extract_keywords(model_answer)
|
116 |
keyword_overlap = len(student_keywords.intersection(teacher_keywords))
|
117 |
+
return keyword_overlap / (len(teacher_keywords) if len(teacher_keywords) > 0 else 1)
|
118 |
|
|
|
119 |
def evaluate_answer(image, languages, model_answer):
|
120 |
student_answer = extract_text_from_image(image, languages)
|
121 |
|
122 |
+
# Calculate semantic similarity
|
123 |
semantic_similarity = compare_answers(student_answer, model_answer)
|
124 |
|
125 |
+
# Calculate keyword similarity
|
126 |
keyword_similarity = check_keywords(student_answer, model_answer)
|
127 |
|
128 |
+
# Adjust the weight of keyword similarity
|
129 |
+
combined_similarity = (0.9 * semantic_similarity + 0.1 * keyword_similarity)
|
130 |
grade = get_grade(combined_similarity)
|
131 |
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
132 |
badge = assign_badge(grade)
|
|
|
134 |
prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
|
135 |
return grade, combined_similarity * 100, feedback, badge, detailed_feedback_msg, prompt
|
136 |
|
|
|
137 |
async def gradio_interface(image, languages: List[str], model_answer="The process of photosynthesis helps plants produce glucose using sunlight.", prompt="", history=[]):
|
138 |
grade, similarity_score, feedback, badge, detailed_feedback_msg, prompt = evaluate_answer(image, languages, model_answer)
|
139 |
response = ""
|
140 |
async for result in chat_groq(prompt, history):
|
141 |
+
response = result
|
142 |
return grade, similarity_score, feedback, badge, detailed_feedback_msg, response
|
143 |
|
|
|
144 |
language_choices = pytesseract.get_languages()
|
145 |
|
|
|
146 |
interface = gr.Interface(
|
147 |
fn=gradio_interface,
|
148 |
inputs=[
|
|
|
155 |
gr.Text(label="Grade"),
|
156 |
gr.Number(label="Similarity Score (%)"),
|
157 |
gr.Text(label="Feedback"),
|
|
|
158 |
gr.Text(label="Badge"),
|
159 |
gr.JSON(label="Detailed Feedback"),
|
160 |
gr.Text(label="Generated Response")
|