|
import gradio as gr
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
import torch
|
|
import numpy as np
|
|
import cv2
|
|
from PIL import Image
|
|
import pytesseract
|
|
from sentence_transformers import SentenceTransformer, util
|
|
import io
|
|
|
|
|
|
model_path = "E:/grader app/saved_model"
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
print(f"Using device: {device}")
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_path,
|
|
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
|
device_map="auto" if device == "cuda" else None
|
|
)
|
|
model.to(device)
|
|
|
|
|
|
model1 = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
def get_embedding(text):
|
|
return model1.encode(text, convert_to_tensor=True)
|
|
|
|
def calculate_similarity(text1, text2):
|
|
embedding1 = get_embedding(text1)
|
|
embedding2 = get_embedding(text2)
|
|
similarity = util.pytorch_cos_sim(embedding1, embedding2)
|
|
return similarity.item()
|
|
|
|
def get_grade(similarity_score):
|
|
if similarity_score >= 0.9:
|
|
return 5
|
|
elif similarity_score >= 0.8:
|
|
return 4
|
|
elif similarity_score >= 0.7:
|
|
return 3
|
|
elif similarity_score >= 0.6:
|
|
return 2
|
|
else:
|
|
return 1
|
|
|
|
def extract_text_from_image(image):
|
|
|
|
image = image.convert('RGB')
|
|
|
|
text = pytesseract.image_to_string(image)
|
|
return text.strip()
|
|
|
|
def evaluate_answer(image):
|
|
student_answer = extract_text_from_image(image)
|
|
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
|
|
similarity_score = calculate_similarity(student_answer, model_answer)
|
|
grade = get_grade(similarity_score)
|
|
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
|
return grade, similarity_score * 100, feedback
|
|
|
|
def generate_response(prompt):
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
|
|
|
|
|
with torch.no_grad():
|
|
outputs = model.generate(inputs.input_ids, max_length=150, temperature=0.7)
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
return response
|
|
|
|
def gradio_interface(image, prompt):
|
|
grade, similarity_score, feedback = evaluate_answer(image)
|
|
response = generate_response(prompt)
|
|
return grade, similarity_score, feedback, response
|
|
|
|
|
|
interface = gr.Interface(
|
|
fn=gradio_interface,
|
|
inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")],
|
|
outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()],
|
|
live=True
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
interface.launch()
|
|
|