grader / app.py
Garvitj's picture
Update app.py
de9e3c2 verified
raw
history blame
3.63 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
import numpy as np
import cv2
from PIL import Image
import pytesseract as tess
from sentence_transformers import SentenceTransformer, util
import io
# save_directory = "spaces/Garvitj/grader"
# # Load the tokenizer from the saved directory
# tokenizer = AutoTokenizer.from_pretrained(save_directory)
# # Load the model from the saved directory
# model = AutoModelForCausalLM.from_pretrained(
# save_directory,
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
# device_map="auto" if torch.cuda.is_available() else None
# )
# # Move model to the appropriate device (CPU or CUDA)
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model.to(device)
# print(f"Model and tokenizer loaded from {save_directory}")
tess.pytesseract.tesseract_cmd = r"Garvitj/grader/tesseract.exe"
# Use a pipeline as a high-level helper
# pipe = pipeline("text-generation", model="eachadea/vicuna-7b-1.1")
# Initialize the pipeline with the Hugging Face API
# pipe = pipeline("text-generation", model="eachadea/vicuna-7b-1.1", api_key="your_api_key")
import requests
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
headers = {"Authorization": "hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# output = query({
# "inputs": "Can you please let us know more details about your ",
# })
def generate_response(prompt):
# Generate response from the API
response = query({"inputs":prompt})
return response[0]['generated_text']
def get_embedding(text):
return model1.encode(text, convert_to_tensor=True)
def calculate_similarity(text1, text2):
embedding1 = get_embedding(text1)
embedding2 = get_embedding(text2)
similarity = util.pytorch_cos_sim(embedding1, embedding2)
return similarity.item()
def get_grade(similarity_score):
if similarity_score >= 0.9:
return 5
elif similarity_score >= 0.8:
return 4
elif similarity_score >= 0.7:
return 3
elif similarity_score >= 0.6:
return 2
else:
return 1
def extract_text_from_image(image):
# Convert PIL image to RGB format
image = image.convert('RGB')
# Use pytesseract to extract text from the image
text = tess.image_to_string(image)
return text.strip()
def evaluate_answer(image):
student_answer = extract_text_from_image(image)
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
similarity_score = calculate_similarity(student_answer, model_answer)
grade = get_grade(similarity_score)
feedback = generate_response("Student's answer: {student_answer}\nTeacher's answer: {model_answer}")
return grade, similarity_score * 100, feedback
def generate_response(prompt):
# Generate response from the new model using the pipeline
response = pipe(prompt, max_length=150, temperature=0.7)
return response[0]['generated_text']
def gradio_interface(image, prompt):
grade, similarity_score, feedback = evaluate_answer(image)
response = generate_response(prompt)
return grade, similarity_score, feedback, response
# Define Gradio interface
interface = gr.Interface(
fn=gradio_interface,
inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")],
outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()],
live=True
)
if __name__ == "__main__":
interface.launch()