grader / app.py
Garvitj's picture
Update app.py
4fbc74b verified
raw
history blame
3.32 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
import numpy as np
import cv2
from PIL import Image
import pytesseract
from sentence_transformers import SentenceTransformer, util
import io
from typing import List
def extract_text_from_image(filepath: str, languages: List[str]):
image = Image.open(filepath)
return pytesseract.image_to_string(image=image, lang=', '.join(languages))
# tess.pytesseract.tesseract_cmd = r"tesseract"
import requests
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
headers = {"Authorization": "hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# output = query({
# "inputs": "Can you please let us know more details about your ",
# })
def generate_response(prompt):
# Generate response from the API
response = query({"inputs":prompt})
return response[0]['generated_text']
def get_embedding(text):
return model1.encode(text, convert_to_tensor=True)
def calculate_similarity(text1, text2):
embedding1 = get_embedding(text1)
embedding2 = get_embedding(text2)
similarity = util.pytorch_cos_sim(embedding1, embedding2)
return similarity.item()
def get_grade(similarity_score):
if similarity_score >= 0.9:
return 5
elif similarity_score >= 0.8:
return 4
elif similarity_score >= 0.7:
return 3
elif similarity_score >= 0.6:
return 2
else:
return 1
def evaluate_answer(image,languages):
student_answer = extract_text_from_image(image,languages)
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
similarity_score = calculate_similarity(student_answer, model_answer)
grade = get_grade(similarity_score)
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
return grade, similarity_score * 100, feedback
def generate_response(prompt):
# Generate response from the new model using the pipeline
response = pipe(prompt, max_length=150, temperature=0.7)
return response[0]['generated_text']
def gradio_interface(image, languages: List[str]):
grade, similarity_score, feedback = evaluate_answer(image,languages)
response = generate_response(prompt)
return grade, similarity_score, response
# # Define Gradio interface
# interface = gr.Interface(
# fn=gradio_interface,
# inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")],
# outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()],
# live=True
# )
language_choices = pytesseract.get_languages()
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language')
],
outputs=[gr.Text(label="Grade"), gr.Number(label="Similarity Score (%)"), gr.Text(label="Feedback")],
title="Automated Grading System",
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
live=True
)
if __name__ == "__main__":
interface.launch()