import gradio as gr from huggingface_hub import InferenceClient # Using Zephyr-7B Beta MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" client = InferenceClient(MODEL_NAME) def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" try: for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content if message.choices[0].delta else "" response += token yield response except Exception as e: yield f"Error: {str(e)}" # Gradio UI with adjustable settings demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) if __name__ == "__main__": demo.launch()