Garvitj commited on
Commit
2ffd189
·
verified ·
1 Parent(s): fee0512

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -44,14 +44,16 @@ def predict_text_emotion(text):
44
  # Extract audio features and predict emotion
45
  def extract_audio_features(audio_data, sample_rate):
46
  if not isinstance(audio_data, np.ndarray):
47
- audio_data = np.array(audio_data, dtype=np.float32) # Ensure it is a NumPy array with float type
48
  else:
49
  audio_data = audio_data.astype(np.float32) # Convert to float32
50
 
51
- mfcc = np.mean(librosa.feature.mfcc(y=audio_data, sr=sample_rate, n_mfcc=40).T, axis=0)
52
- features = np.expand_dims(mfcc, axis=0)
 
53
  return features
54
 
 
55
  def predict_audio_emotion(audio_data, sample_rate):
56
  features = extract_audio_features(audio_data, sample_rate)
57
  features = np.reshape(features, (1, 40)) # Match model expected input
 
44
  # Extract audio features and predict emotion
45
  def extract_audio_features(audio_data, sample_rate):
46
  if not isinstance(audio_data, np.ndarray):
47
+ audio_data = np.array(audio_data, dtype=np.float32) # Ensure it's a NumPy array with float type
48
  else:
49
  audio_data = audio_data.astype(np.float32) # Convert to float32
50
 
51
+ mfcc = librosa.feature.mfcc(y=audio_data, sr=sample_rate, n_mfcc=704)
52
+ mfcc = np.mean(mfcc.T, axis=0) # Compute mean across time
53
+ features = np.expand_dims(mfcc, axis=0) # Add batch dimension
54
  return features
55
 
56
+
57
  def predict_audio_emotion(audio_data, sample_rate):
58
  features = extract_audio_features(audio_data, sample_rate)
59
  features = np.reshape(features, (1, 40)) # Match model expected input