Spaces:
Sleeping
Sleeping
File size: 1,497 Bytes
ab4fd59 3c9e8cf 4a21329 3c9e8cf a6253f6 915d8ef 3c9e8cf 3a2b7bc 3c9e8cf 3a2b7bc 3c9e8cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
from huggingface_hub import InferenceClient
# Using Zephyr-7B Beta
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
client = InferenceClient(MODEL_NAME)
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
try:
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content if message.choices[0].delta else ""
response += token
yield response
except Exception as e:
yield f"Error: {str(e)}"
# Gradio UI with adjustable settings
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
if __name__ == "__main__":
demo.launch()
|