import streamlit as st import pandas as pd import numpy as np import yfinance as yf import matplotlib.pyplot as plt #Fungsi untuk mengunduh data saham def get_stock_data(tickers, start, end): data = yf.download(tickers, start=start, end=end)['Adj Close'] return data #Fungsi untuk menghitung portofolio optimal def optimize_portfolio(data): returns = data.pct_change().dropna() mean_returns = returns.mean() cov_matrix = returns.cov() num_assets = len(data.columns) num_portfolios = 10000 results = np.zeros((3, num_portfolios)) weights_record = [] for i in range(num_portfolios): weights = np.random.random(num_assets) weights /= np.sum(weights) weights_record.append(weights) portfolio_return = np.sum(weights * mean_returns) portfolio_stddev = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) sharpe_ratio = portfolio_return / portfolio_stddev results[0, i] = portfolio_return results[1, i] = portfolio_stddev results[2, i] = sharpe_ratio max_sharpe_idx = np.argmax(results[2]) optimal_weights = weights_record[max_sharpe_idx] optimal_portfolio = {data.columns[i]: optimal_weights[i] for i in range(num_assets)} return optimal_portfolio Streamlit UI st.title("Optimasi Portofolio dengan Model Markowitz") tickers = st.text_input("Masukkan kode saham (pisahkan dengan koma):", "BBCA.JK, TLKM.JK, UNVR.JK") start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01")) end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2020-12-31")) if st.button("Optimasi Portofolio"): tickers_list = [ticker.strip() for ticker in tickers.split(",")] data = get_stock_data(tickers_list, start_date, end_date) optimal_portfolio = optimize_portfolio(data) st.subheader("Bobot Optimal Portofolio") st.write(pd.DataFrame(optimal_portfolio.items(), columns=["Saham", "Bobot"])) fig, ax = plt.subplots() ax.pie(optimal_portfolio.values(), labels=optimal_portfolio.keys(), autopct='%1.1f%%', startangle=140) ax.axis('equal') st.pyplot(fig)