Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,10 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import numpy as np
|
| 4 |
-
import yfinance as yf
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
|
| 7 |
Fungsi untuk mengunduh data saham
|
| 8 |
|
| 9 |
def get_stock_data(tickers, start, end): data = yf.download(tickers, start=start, end=end)['Adj Close'] return data
|
| 10 |
|
| 11 |
-
Fungsi untuk menghitung portofolio optimal
|
| 12 |
|
| 13 |
def optimize_portfolio(data): returns = data.pct_change().dropna() mean_returns = returns.mean() cov_matrix = returns.cov() num_assets = len(data.columns) num_portfolios = 10000
|
| 14 |
|
|
|
|
| 1 |
+
import streamlit as st import pandas as pd import numpy as np import yfinance as yf import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
Fungsi untuk mengunduh data saham
|
| 4 |
|
| 5 |
def get_stock_data(tickers, start, end): data = yf.download(tickers, start=start, end=end)['Adj Close'] return data
|
| 6 |
|
| 7 |
+
#Fungsi untuk menghitung portofolio optimal
|
| 8 |
|
| 9 |
def optimize_portfolio(data): returns = data.pct_change().dropna() mean_returns = returns.mean() cov_matrix = returns.cov() num_assets = len(data.columns) num_portfolios = 10000
|
| 10 |
|