Spaces:
Runtime error
Runtime error
create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import TapasTokenizer, TFTapasForQuestionAnswering
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import datetime
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def execute_query(query, csv_file):
|
| 7 |
+
a = datetime.datetime.now()
|
| 8 |
+
|
| 9 |
+
table = pd.read_csv(csv_file.name, delimiter=",")
|
| 10 |
+
table.fillna(0, inplace=True)
|
| 11 |
+
table = table.astype(str)
|
| 12 |
+
|
| 13 |
+
model_name = "google/tapas-base-finetuned-wtq"
|
| 14 |
+
model = TFTapasForQuestionAnswering.from_pretrained(model_name)
|
| 15 |
+
tokenizer = TapasTokenizer.from_pretrained(model_name)
|
| 16 |
+
|
| 17 |
+
queries = [query]
|
| 18 |
+
|
| 19 |
+
inputs = tokenizer(table=table, queries=queries, padding=True, return_tensors="tf",truncated=True)
|
| 20 |
+
outputs = model(**inputs)
|
| 21 |
+
|
| 22 |
+
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
|
| 23 |
+
inputs, outputs.logits, outputs.logits_aggregation
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# let's print out the results:
|
| 27 |
+
id2aggregation = {0: "NONE", 1: "SUM", 2: "AVERAGE", 3: "COUNT"}
|
| 28 |
+
aggregation_predictions_string = [id2aggregation[x] for x in predicted_aggregation_indices]
|
| 29 |
+
|
| 30 |
+
answers = []
|
| 31 |
+
for coordinates in predicted_answer_coordinates:
|
| 32 |
+
if len(coordinates) == 1:
|
| 33 |
+
# only a single cell:
|
| 34 |
+
answers.append(table.iat[coordinates[0]])
|
| 35 |
+
else:
|
| 36 |
+
# multiple cells
|
| 37 |
+
cell_values = []
|
| 38 |
+
for coordinate in coordinates:
|
| 39 |
+
cell_values.append(table.iat[coordinate])
|
| 40 |
+
answers.append(cell_values)
|
| 41 |
+
|
| 42 |
+
for query, answer, predicted_agg in zip(queries, answers, aggregation_predictions_string):
|
| 43 |
+
if predicted_agg != "NONE":
|
| 44 |
+
answers.append(predicted_agg)
|
| 45 |
+
|
| 46 |
+
query_result = {
|
| 47 |
+
"query": query,
|
| 48 |
+
"result": answers
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
b = datetime.datetime.now()
|
| 52 |
+
print(b - a)
|
| 53 |
+
|
| 54 |
+
return query_result, table
|
| 55 |
+
|